Classical Mechanics MCQ Quiz in मल्याळम - Objective Question with Answer for Classical Mechanics - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 11, 2025

നേടുക Classical Mechanics ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Classical Mechanics MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Classical Mechanics MCQ Objective Questions

Top Classical Mechanics MCQ Objective Questions

Classical Mechanics Question 1:

Earth may be assumed to be an axially symmetric freely rotating rigid body. The ratio of the principal moments of inertia about the axis of symmetry and an axis perpendicular to it is 33:32. If T0 is the time taken by earth to make one rotation around its axis of symmetry, then the time period of precession is closest to

  1. 33 T0
  2. 33 T0/2
  3. 32 T0
  4. 16 T0

Answer (Detailed Solution Below)

Option 3 : 32 T0

Classical Mechanics Question 1 Detailed Solution

Explanation:

In this case, we use the formula for the precession of an axially symmetric freely rotating rigid body, caused by the torque resulting from external forces (such as gravity) trying to alter the tilt of the rotation axis. This forms what is known as a gyroscope.

The formula for the precession rate (angular frequency) of a freely spinning body is given by:

 \(ω_{precession} = ω_0 × {(\frac{ I_{axis} }{I_{perpendicular}}-1)}\)

where

  • \(ω_0\) is the rotational angular frequency of the earth about its axis of symmetry,
  • \(I_{perpendicular}\) is the moment of inertia of the earth about an axis perpendicular to the axis of symmetry,
  • \(I_{axis}\) is the moment of inertia of the earth about the axis of symmetry.

Solving for the time period of precession, which is the reciprocal of the precession rate, we get: \(T_{precession} =T_0\times\frac1{(\frac{ I_{axis} }{I_{perpendicular}}-1)}\)

It is given that the ratio of the moment of inertia about the axis of symmetry \(I_{axis}\) to the moment of inertia about an axis perpendicular to this \(I_{perpendicular}\) is 33:32, which makes: \(\frac {I_{axis}}{ I_{perpendicular}} = \frac {33}{32}\)

Substituting this into the precession period formula, we get: \(T_{precession} = T_0 × \frac {1 }{( \frac {33}{32} - 1)}\) 

\(T_{precession} = 32 T_0\)

Classical Mechanics Question 2:

A particle of mass m moves under the influence of a force F(x) = -kx^3, where x is the displacement of the particle from its equilibrium position and k is a positive constant. If the particle is initially at rest at x = a, then what is the velocity of the particle when it passes through its equilibrium position?

  1. \(\sqrt{\dfrac{2k}{m}a^2} \ \)
  2. \(\sqrt{\dfrac{k}{2m}a^2} \ \)
  3. \(\sqrt{\dfrac{3k}{m}a^2} \ \)
  4. \( \sqrt{\dfrac{2k}{3m}a^2} \ \)

Answer (Detailed Solution Below)

Option 2 : \(\sqrt{\dfrac{k}{2m}a^2} \ \)

Classical Mechanics Question 2 Detailed Solution

Explanation:

We can use Newton's second law of motion to solve this problem.

The equation of motion for the particle is given by:

\(m \dfrac{d^2x}{dt^2} = -kx^3 \ \)

We can rewrite this equation as:

\(\dfrac{d^2x}{dt^2} = -\dfrac{k}{m}x^3 \ \ \)

We can multiply both sides of this equation by \(\dfrac{dx}{dt}\ \) to obtain:

\(\dfrac{d}{dt} \left(\dfrac{1}{2} \left(\dfrac{dx}{dt}\right)^2\right) = -\dfrac{k}{m}x^3 \dfrac{dx}{dt} \ \).

We can integrate both sides of this equation with respect to time to obtain:

\(\dfrac{1}{2} \left(\dfrac{dx}{dt}\right)^2 = \dfrac{k}{4m} (a^4 - x^4) \ \)

At the equilibrium position x = 0, we have:

\(\dfrac{1}{2} \left(\dfrac{dx}{dt}\right)^2 = \dfrac{k}{4m} a^4 \ \)

Therefore, the velocity of the particle when it passes through its equilibrium position is:

\(\left|\dfrac{dx}{dt}\right| = \sqrt{\dfrac{k}{2m}a^2} . \ \)

Therefore, the correct option is (2).

Classical Mechanics Question 3:

A ball bouncing of a rigid floor is described by the potential energy function

V(x) = \(\left\{\begin{array}{lll} \rm mgx & \text { for } & \rm x>0 \\ \infty & \text { for } & \rm x \leq 0 \end{array}\right.\)

Which of the following schematic diagrams best represents the phase space plot of the ball?

  1. F1 Vinanti Teaching 03.03.23 D1
  2. F1 Vinanti Teaching 03.03.23 D2
  3. F1 Vinanti Teaching 03.03.23 D3
  4. F1 Vinanti Teaching 03.03.23 D4

Answer (Detailed Solution Below)

Option 2 : F1 Vinanti Teaching 03.03.23 D2

Classical Mechanics Question 3 Detailed Solution

Concept:

Phase - space diagram or phase plot is a plot between generalized coordinate x and generalized momentum p.

Calculation:

The Lagrangian and Hamiltonian for the system is given as follows:

L = T - V

\({1\over 2} m \dot{x}^2 - mgx \)

H = \({p^2 \over 2m} + mgx \) 

E = \(\rm\frac{p^{2}}{2m}\) + mgx

⇒ p2 = 2m(E − mgx) which is equation of parabola.

At x = 0,

p = \(\pm \sqrt{2mE} \)

At p = 0,

x = \({E \over mg}\)

For x < 0, when the potential energy is ∞ then the kinetic energy will be 0.

The correct answer is option (2).

Classical Mechanics Question 4:

The Lagrangian of a system is given by

L = \(\frac{1}{2}\) ml2[\(\dot \theta^2\) + sin2θ\(\dot \varphi^2\)] − mgl cos θ, where m, l and g are constants.

Which of the following is conserved?

  1. \(\dot \varphi \sin^2 \theta\)
  2. \(\dot \varphi \sin \theta\)
  3. \(\frac{\dot{\varphi}}{\sin \theta}\)
  4. \(\frac{\dot{\varphi}}{\sin ^{2} \theta}\)

Answer (Detailed Solution Below)

Option 1 : \(\dot \varphi \sin^2 \theta\)

Classical Mechanics Question 4 Detailed Solution

Concept:

Lagrangian mechanics enables us to find the equations of motion when the Newtonian method is proving difficult.

In Lagrangian mechanics we start, as usual, by drawing a large, clear diagram of the system, using a ruler and a compass.

Explanation:

As φ is cyclic coordinate, so \(\rm\frac{\partial L}{\partial \dot{\varphi}}\) = pφ =\(m l^2 \sin^2 \theta \dot{\phi} \), is a constant since m, l and g are constants.

Now using the Euler Lagrangian equation for motion we get:

\(\frac{d}{dt} (\frac{\partial L}{\partial \dot{\phi}}) =0 \).

Thus,  \(m l^2 \sin^2 \theta \dot{\phi} \) is conserved.

The correct answer is option (1).

Classical Mechanics Question 5:

The relativistic form of Newton's second law of motion is

  1. F = \(\rm\frac{m c}{\sqrt{c^{2}−v^{2}}} \frac{d v}{d t}\)
  2. F = \(\rm\frac{m \sqrt{c^{2}−v^{2}}}{c} \frac{d v}{d t}\)
  3. F = \(\rm\frac{m c^{2}}{c^{2}−v^{2}} \frac{d v}{d t}\)
  4. F = \(\rm m \frac{c^{2}−v^{2}}{c^{2}} \frac{d v}{d t}\)

Answer (Detailed Solution Below)

Option 3 : F = \(\rm\frac{m c^{2}}{c^{2}−v^{2}} \frac{d v}{d t}\)

Classical Mechanics Question 5 Detailed Solution

Explanation:

We known that:

P = \(\rm\frac{m v}{\sqrt{1−\frac{v^{2}}{c^{2}}}}\) ⇒ F = \(\rm\frac{d P}{d t}\)\(\rm m\frac{d v}{d t} \cdot \frac{1}{\sqrt{1−\frac{v^{2}}{c^{2}}}}+m v\left(−\frac{1}{2}\right) \cdot \frac{1}{\left(1−\frac{v^{2}}{c^{2}}\right)^{3/2}} \cdot \frac{−2 v}{c^{2}} \frac{d v}{d t}\)

⇒ F = \(\rm m \frac{d v}{d t} \frac{1}{\sqrt{1−\frac{v^{2}}{c^{2}}}}\left(1+\frac{1}{2} \frac{v^{2}/c^{2}}{\left(1−\frac{v^{2}}{c^{2}}\right)}\right) = m \frac{d v}{d t}\left(\frac{1−v^{2}/2 c^{2}}{\left(1−\frac{v^{2}}{c^{2}}\right)^{3/2}}\right)\)

\(\rm m\frac{d v}{d t}\left[\frac{\left(1−v^{2}/c^{2}\right)^{1/2}}{\left(1−v^{2}/c^{2}\right)\left(1−v^{2}/c^{2}\right)^{1/2}}\right] = \frac{m c^{2}}{\left(c^{2}−v^{2}\right)} \frac{d v}{dt}\)

The correct option is option (3).

Classical Mechanics Question 6:

A particle of mass m slides under the gravity without friction along the parabolic path y = ax2, as shown in the figure. Here a is a constant.

F2 Arbaz Teaching 04-05-2023 D20

The Lagrange’s equation of motion of the particle for above question is given by

  1. ẍ = 2gax
  2. m(1 + 4a2x2)ẍ = −2mgax − 4ma2xẋ2
  3. m(1 + 4a2x2)ẍ = 2mgax + 4ma2xẋ2
  4. ẍ = −2gax

Answer (Detailed Solution Below)

Option 2 : m(1 + 4a2x2)ẍ = −2mgax − 4ma2xẋ2

Classical Mechanics Question 6 Detailed Solution

Concept:

Lagrange's equation of motion is a mathematical equation that is used to describe the motion of a physical system in terms of its Lagrangian function.

The Lagrangian function is a mathematical function that describes the energy of a system in terms of its position and velocity.

Explanation:

The Euler equation of motion is given as:

\(\rm\frac{d}{dt}\left(\frac{d L}{d \dot{x}}\right)=\frac{dL}{dx}\) ⇒ mẍ(1 + 4a2x2) = −4ma2xẋ2 − 2mgax.

The correct option is option (2).

Classical Mechanics Question 7:

A particle of mass m slides under the gravity without friction along the parabolic path y = ax2, as shown in the figure. Here a is a constant.

F2 Arbaz Teaching 04-05-2023 D20

The Lagrangian for this particle is given by

  1. L = \(\frac{1}{2}\)mẋ2 − mgax2
  2. \(\frac{1}{2}\)m(1 + 4a2x2)ẋ2 − mgax2
  3. \(\frac{1}{2}\)m2 + mgax2
  4. \(\frac{1}{2}\)m(1 + 4a2x2)ẋ2 + mgax2

Answer (Detailed Solution Below)

Option 2 : \(\frac{1}{2}\)m(1 + 4a2x2)ẋ2 − mgax2

Classical Mechanics Question 7 Detailed Solution

Explanation:

Equation of constrain is given by y = ax2, K.E., T = \(\frac{1}{2}\)m(ẋ2 + ẏ2)

ẏ = 2axẋ ⇒ T = \(\frac{1}{2}\)m(ẋ2 + 4a2x22) = \(\frac{1}{2}\)mẋ2(1 + 4ax2)

V = mgy = mgax2.

∵ L = T − V ⇒ L = \(\frac{1}{2}\)m(1 + 4a2x2)ẋ2 − mgax2   

The correct option is option (2).

Classical Mechanics Question 8:

Which of the following terms, when added to the Lagrangian L(x, y, \(\dot x\), \(\dot y\)) of a system with two degrees of freedom, will not change the equations of motion?

  1. \(x\ddot x - y\ddot y\)
  2. \(x\ddot y - y\ddot x\)
  3. \(x\dot y - y\dot x\)
  4. \(y{\dot x^2} + x{\dot y^2}\)

Answer (Detailed Solution Below)

Option 2 : \(x\ddot y - y\ddot x\)

Classical Mechanics Question 8 Detailed Solution

Concept:

The Lagranges equation of motion of a system is given by

\({d \over dt} {\partial L \over \partial \dot{q}} - {\partial L \over \partial q} = 0\)

Calculation:

The Lagrangian L depends on 

L(x,y,\(̇ x\),\(̇ y\))

\({d \over dt} {\partial L \over \partial \dot{x}} - {\partial L \over \partial x} = 0\)

\({d \over dt} {\partial L \over \partial \dot{ y}} - {\partial L \over \partial y} = 0 \)

L' = L(x,y,\(\dot x\),\(\dot{y}\))

\({d' \over dt'} {\partial L' \over \partial x} - {\partial L' \over \partial x} = ​​{d \over dt} {\partial L \over \partial x} - {\partial L \over \partial x}+ \ddot{y} = 0\)

\(\dot{y} = c_1\)

Similarly \(\dot{x} = c_2\)

The correct answer is option (2).

Classical Mechanics Question 9:

A particle of mass m moves in a potential that is \({\rm{V}}\,{\rm{ = }}\,\frac{{\rm{1}}}{{\rm{2}}}{\rm{m}}\left( {{\rm{\omega }}_{\rm{1}}^{\rm{2}}{{\rm{x}}^{\rm{2}}}\,{\rm{ + }}\,{\rm{\omega }}_{\rm{2}}^{\rm{2}}{{\rm{y}}^{\rm{2}}}\,{\rm{ + }}\,{\rm{\omega }}_{\rm{3}}^{\rm{2}}{{\rm{z}}^{\rm{2}}}} \right)\) in the coordinates of a non-inertial frame F. The frame F is rotating with respect to an inertial frame with an angular velocity k̂Ω, where k̂ is the unit vector along their common z - axis. The motion of the particle is unstable for all angular frequencies satisfying

  1. \(\left( {{\Omega ^2}\, - \,{\rm{\omega }}_1^2} \right)\,\left( {{\Omega ^2}\, - \,{\rm{\omega }}_2^2} \right) > 0\)
  2. \(\left( {{\Omega ^2}\, - \,{\rm{\omega }}_1^2} \right)\,\left( {{\Omega ^2}\, - \,{\rm{\omega }}_2^2} \right) < 0\)
  3. \(\left( {{\Omega ^2}\, - {{\left( {{{\rm{\omega }}_1}\, + \,{{\rm{\omega }}_2}} \right)}^2}} \right)\,\left( {{\Omega ^2} - \,{{\left| {{{\rm{\omega }}_1}\, - \,{{\rm{\omega }}_2}} \right|}^2}} \right) > 0\)
  4. \(\left( {{\Omega ^2}\, - {{\left( {{{\rm{\omega }}_1}\, + \,{{\rm{\omega }}_2}} \right)}^2}} \right)\,\left( {{\Omega ^2} - \,{{\left| {{{\rm{\omega }}_1}\, - \,{{\rm{\omega }}_2}} \right|}^2}} \right) < 0\)

Answer (Detailed Solution Below)

Option 4 : \(\left( {{\Omega ^2}\, - {{\left( {{{\rm{\omega }}_1}\, + \,{{\rm{\omega }}_2}} \right)}^2}} \right)\,\left( {{\Omega ^2} - \,{{\left| {{{\rm{\omega }}_1}\, - \,{{\rm{\omega }}_2}} \right|}^2}} \right) < 0\)

Classical Mechanics Question 9 Detailed Solution

CONCEPT:

As we know,

\(\vec F = - \vec \nabla V\)

CALCULATION:

Given: \({\rm{V}}\,{\rm{ = }}\,\frac{{\rm{1}}}{{\rm{2}}}{\rm{m}}\left( {{\rm{\omega }}_{\rm{1}}^{\rm{2}}{{\rm{x}}^{\rm{2}}}\,{\rm{ + }}\,{\rm{\omega }}_{\rm{2}}^{\rm{2}}{{\rm{y}}^{\rm{2}}}\,{\rm{ + }}\,{\rm{\omega }}_{\rm{3}}^{\rm{2}}{{\rm{z}}^{\rm{2}}}} \right)\)

As we have;

\(\vec F = - \vec \nabla V\)

⇒ \(\vec F = - m(\omega_1^2 x \hat i +\omega_2^2 y \hat j +\omega_3^2 z \hat k) \)

Now the centrifugal force on the particle is written as;

\(\vec F_{cf} =-m\vec\omega\times (\vec \omega \times \vec r)\)

Here, \(\vec r = x \hat i+y\hat j+z\hat k\)  and \(\vec \omega = \hat k \Omega \)

so we have;

\(\vec \omega \times \vec r = \Omega (y \hat i-x \hat j )\)

⇒ \(\vec F_{cf} = -m\vec\omega\times \Omega (y \hat i-x \hat j )\)

⇒ \(\vec F_{cf} = -m\Omega^2[\hat k\times (y \hat i-x \hat j )]\)

\(\vec F_{cf} = m\Omega^2(x \hat i+y \hat j)\)

Since, \(\vec F > \vec F_{cf}\)

\(- m(\omega_1^2 x \hat i +\omega_2^2y \hat j +\omega_3^2 z \hat k) >-m\Omega^2(x \hat j+y \hat i)\)

Now, compare the x,y, and z components we have;

\(\omega_1^2x >\Omega ^2 x\)

\(\Omega^2 - \omega_1^2 <0\)

Similarly, \(\Omega^2 - \omega_2^2 <0\)

and \(\omega_3^2 >0\)

Combining we have;

\(\left( {{\Omega ^2}\, - \,{\rm{\omega }}_1^2} \right)\,\left( {{\Omega ^2}\, - \,{\rm{\omega }}_2^2} \right) < 0\)

Hence, option 2 is the correct answer.

Classical Mechanics Question 10:

A satellite is revolving round the earth with a speed of 7.6 km/s.. What is your estimation of the height of the satellite from the earth surface, consider the mass of the earth = 6.1024 kg and radius of the earth = 6400 km

  1. 500 km
  2. 550 km
  3. 600 km
  4. 650 km

Answer (Detailed Solution Below)

Option 2 : 550 km

Classical Mechanics Question 10 Detailed Solution

Calculation:

 To calculate the height of the satellite above the Earth's surface, we use the formula for orbital velocity:

\(v = \sqrt{\frac{GM}{R}}\)

Rearranging for R we get:

\(R = \frac{GM}{v^2}\)

Given Data:

\(G = 6.674 \times 10^{-11}Nm^2{kg}^2\\ M=6.0 \times 10^{24} {kg}\\ v=7.6 km/s=7.6 \times 10^3{m/s}\\ R_{Earth}=6400 {km}= 6.4 \times 10^6 m.\)

Substitute the Values:

\(R = \frac{(6.674 \times 10^{-11}) \cdot (6.0 \times 10^{24})}{(7.6 \times 10^3)^2}\)

\(GM = (6.674 \times 10^{-11}) \cdot (6.0 \times 10^{24}) = 4.0044 \times 10^{14}.\)

Calculate R:

\(R = \frac{4.0044 \times 10^{14}}{5.776 \times 10^7} = 6.9328 \times 10^6 \, \text{m} = 6932.8 \, \text{km}.\)

The height h above the Earth's surface is:

\(h = R - R_{\text{Earth}}=6932.8 - 6400 = 532.8\approx 550km\)

Thus, option '2' is correct.

Get Free Access Now
Hot Links: teen patti star teen patti master list teen patti sweet