Binomial Theorem MCQ Quiz in मल्याळम - Objective Question with Answer for Binomial Theorem - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 8, 2025

നേടുക Binomial Theorem ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Binomial Theorem MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Binomial Theorem MCQ Objective Questions

Top Binomial Theorem MCQ Objective Questions

Binomial Theorem Question 1:

In the expansion of \(\rm (\sqrt x-\frac3x)^ {12}\), independent of x is 

  1. 3rd term
  2. 4th term 
  3. 5th term
  4. 6th term

Answer (Detailed Solution Below)

Option 3 : 5th term

Binomial Theorem Question 1 Detailed Solution

Concept:

General Term in the expansion (x - y)n = Tr+1 = (-1)r × nCr × xn-r ×  yr

Calculation:

The general term in the expansion of \(\rm (\sqrt x-\frac3x)^ {12}\) is given by, 

\(\rm T_{r+1}=(-1)^r\times ^{12}C_r\times(\sqrt x)^{12-r}\times(\frac3x)^r\)

\(⇒ \rm(-1)^r\times^{12}C_r\times( x)^{6-\frac r 2}\times(x)^{-r}\times(3)^r\)

\(⇒ \rm(-1)^r\times ^{12}C_r\times( x)^{6-\frac r 2-r}\times(3)^r\)

For independent terms, the power of x is zero.

On equating power of x in (1) with zero, we get,

\(\rm 6-\frac r2-r=0 \)

\(⇒ 6-\frac{3r}{2}=0\)

⇒ 3r = 12

⇒ r = 4

⇒ r + 1 = 5

So, the 5th term in the given expansion is independent of x.

Hence, option (3) is correct.

Binomial Theorem Question 2:

If 4× nC5 = 9 × n-1C5  then the value of n will be?

  1. 7
  2. 10
  3. 9
  4. 5

Answer (Detailed Solution Below)

Option 3 : 9

Binomial Theorem Question 2 Detailed Solution

Formula used:

\(^nC_r=\frac{n!}{r!(n-r)!}\)

n! = n × (n - 1) × (n - 2).......3 × 2 × 1 

Calculation:

Given that,

4 × nC= 9 × n-1C5

Using the above formula

\(4×\frac{n!}{5!(n-5)!}=9×\frac{(n-1)!}{5![(n-1)-5]!}\)

⇒ \(4×\frac{n× (n-1)!}{5!(n-5)(n-6)!}=9×\frac{(n-1)!}{5![(n-6]!}\)

⇒ \(\frac{4n}{(n-5)} = 9\)

⇒ 9n - 45 = 49

⇒ 5n = 4n

n = 9

Binomial Theorem Question 3:

What is \(\mathop \sum \limits_{{\rm{r\;}} = {\rm{\;}}0}^1 {{\rm{\;}}^{{\rm{n}} + {\rm{r}}}}{{\rm{C}}_{\rm{ n}}}\) equal to?

  1. n + 2C1
  2. n + 2Cn
  3. n + 3Cn
  4. n + 2Cn - 1

Answer (Detailed Solution Below)

Option 1 : n + 2C1

Binomial Theorem Question 3 Detailed Solution

Concept:

  • nCn = 1
  • nC1 = n


Calculation:

We have to find the value of \(\mathop \sum \limits_{{\rm{r\;}} = {\rm{\;}}0}^1 {{\rm{\;}}^{{\rm{n}} + {\rm{r}}}}{{\rm{C}}_{\rm{n}}}\)

\(⇒ \mathop \sum \limits_{{\rm{r\;}} = {\rm{\;}}0}^1 {{\rm{\;}}^{{\rm{n}} + {\rm{r}}}}{{\rm{C}}_{\rm{n}}}\)

⇒ n+0Cn + n+1Cn

nCn + n+1Cn 

⇒ 1 + (n + 1)

(n + 2)

∴  The value of \(\mathop \sum \limits_{{\rm{r\;}} = {\rm{\;}}0}^1 {{\rm{\;}}^{{\rm{n}} + {\rm{r}}}}{{\rm{C}}_{\rm{ n}}}\) is n + 2C1.

Binomial Theorem Question 4:

The 9th term from the end in (x – 1/x) 12 is

  1. 12C4 x4
  2. 12C4 x9
  3. 12C9 x9
  4. 12C3 x3

Answer (Detailed Solution Below)

Option 1 : 12C4 x4

Binomial Theorem Question 4 Detailed Solution

Concept:

We have (x + y) n = nC0 xn + nC1 xn-1 . y + nC2 xn-2. y2 + …. + nCn yn

  • General term: General term in the expansion of (x + y) n is given by
  • \({{\rm{T}}_{\left( {{\rm{r\;}} + {\rm{\;}}1} \right)}} = {\rm{\;}}{{\rm{\;}}^{\rm{n}}}{{\rm{C}}_{\rm{r}}} \times {{\rm{x}}^{{\rm{n}} - {\rm{r}}}} \times {{\rm{y}}^{\rm{r}}}\)
  • In the binomial expansion of (x + y)n , the rth term from end is (n – r + 2)th term.

Note: 

  • In the binomial expansion of (x + y)n, the rth term from end = In the binomial expansion of (y + x)n, the rth term from the start.
  • If we interchange the term x → y, it will give rth term from the beginning.

Calculation:

We have to find 9th term from the end in (x – 1/x) 12

We know that rth term from end means (n – r + 2)th term from start.

So. 9th term from the end = [12 – 9 + 2]th term from start = 5th term from start

General term: \({{\rm{T}}_{\left( {{\rm{r\;}} + {\rm{\;}}1} \right)}} = {\rm{\;}}{{\rm{\;}}^{\rm{n}}}{{\rm{C}}_{\rm{r}}} \times {{\rm{x}}^{{\rm{n}} - {\rm{r}}}} \times {{\rm{y}}^{\rm{r}}}\)

\(\Rightarrow {{\rm{T}}_5} = {\rm{\;}}{{\rm{T}}_{\left( {4 + {\rm{\;}}1} \right)}} = {\rm{\;}}{{\rm{\;}}^{12}}{{\rm{C}}_4} \times {{\rm{x}}^{12 - 4}} \times {\left( {\frac{{ - 1}}{{\rm{x}}}} \right)^4}\)

\( = {{\rm{\;}}^{12}}{{\rm{C}}_4} \times {{\rm{x}}^8} \times \frac{1}{{{{\rm{x}}^4}}}\)

= 12C4 x4

 

Binomial Theorem Question 5:

The 4th term in the expansion of \({\left( {\sqrt x + \;\frac{1}{x}} \right)^{12}}\) is

  1. 220x2
  2. 220x3
  3. 220x3/2
  4. 110x3/2

Answer (Detailed Solution Below)

Option 3 : 220x3/2

Binomial Theorem Question 5 Detailed Solution

Concept:

We have (x + y) n = nC0 xn + nC1 xn-1 . y + nC2 xn-2. y2 + …. + nCn yn

General term: General term in the expansion of (x + y) n is given by\({{\rm{T}}_{\left( {{\rm{r\;}} + {\rm{\;}}1} \right)}} = {\rm{\;}}{{\rm{\;}}^{\rm{n}}}{{\rm{C}}_{\rm{r}}} \times {{\rm{x}}^{{\rm{n}} - {\rm{r}}}} \times {{\rm{y}}^{\rm{r}}}\)

In the binomial expansion of (x + y)n , the rth term from end is (n – r + 2)th term.

\({\;^n}{C_r} = \frac{{n!}}{{r!\left( {n\; - \;r} \right)!}}\)

Calculation:

We have to find 4th term in the expansion of \({\left( {\sqrt x + \;\frac{1}{x}} \right)^{12}}\)

We know that, \({{\rm{T}}_{\left( {{\rm{r\;}} + {\rm{\;}}1} \right)}} = {\rm{\;}}{{\rm{\;}}^{\rm{n}}}{{\rm{C}}_{\rm{r}}} \times {{\rm{x}}^{{\rm{n}} - {\rm{r}}}} \times {{\rm{y}}^{\rm{r}}}\)

\( \Rightarrow {T_4} = \;{{\rm{T}}_{\left( {3{\rm{\;}} + {\rm{\;}}1} \right)}} = {\rm{\;}}{{\rm{\;}}^{12}}{{\rm{C}}_3} \times {\left( {\sqrt {\rm{x}} } \right)^{12 - 3}} \times {\left( {\frac{1}{x}} \right)^3}\)

\( = {{\rm{\;}}^{12}}{{\rm{C}}_3} \times {\left( x \right)^{\frac{9}{2}}} \times {\rm{\;}}\frac{1}{{{x^3}}}\)

\(= \frac{{12!}}{{3!\left( {12\; - \;3} \right)!}} \times {\left( x \right)^{\frac{9}{2} - 3}}\)

= 220 x3/2

∴ Option 3 is correct.

Binomial Theorem Question 6:

Find middle terms in the expansion of \(\rm \left(x - \frac 2 x \right)^{10}\)

  1. 25 × 10C5
  2.  10C5
  3. -25 × 10C5
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : -25 × 10C5

Binomial Theorem Question 6 Detailed Solution

Concept:

General term: General term in the expansion of (x + y)n is given by

\(\rm {T_{\left( {r\; + \;1} \right)}} = \;{\;^n}{C_r} × {x^{n - r}} × {y^r}\)

 

Middle terms: The middle terms is the expansion of (x + y) n depends upon the value of n.

  • If n is even, then total number of terms in the expansion of (x + y) n is n +1. So there is only one middle term i.e. \(\rm \left( {\frac{n}{2} + 1} \right){{\rm{\;}}^{th}}\) term is the middle term.
  • If n is odd, then total number of terms in the expansion of (x + y) n is n + 1. So there are two middle terms i.e. \(\rm {\left( {\frac{{n\; + \;1}}{2}} \right)^{th}}\;\)and \(\rm {\left( {\frac{{n\; + \;3}}{2}} \right)^{th}}\) are two middle terms.

 

Calculation:

Here, we have to find the middle terms in the expansion of \(\rm \left(x - \frac 2 x \right)^{10}\)

Here n = 10 (n is even number)

∴ Middle term = \(\rm \left( {\frac{n}{2} + 1} \right) = \left( {\frac{10}{2} + 1} \right) = 6th\;term\)

T6 = T (5 + 1) = 10C5 × (x) (10 - 5) × \(\rm \left(\frac {-2}{x}\right)^5\)

T5 = -25 × 10C5

Binomial Theorem Question 7:

Find the term independent of x in the expansion of (x2 + x)10

  1. 10C6
  2. 10C5
  3. 10C4
  4. None of these

Answer (Detailed Solution Below)

Option 4 : None of these

Binomial Theorem Question 7 Detailed Solution

Calculation:

For the given expression (x2 + x)10  ,  n = 10

(r + 1)th term

\(\rm T_{r+1}=^{10}\textrm{C}_{r}{(x^2)}^{10-r}x^r\)

\(\rm T_{r+1}=^{10}\textrm{C}_{r}x^{20-2r}x^r\)

\(\rm T_{r+1}=^{11}\textrm{C}_{r}x^{20-r}\)

If this term is independent of x then the index of x must be zero.

i.e.  20 - r = 0,   r = 20.

Here r > n

So no term is independent of x.

Binomial Theorem Question 8:

The value of the term independent of x in the expansion of \({\left( {{x^2} - \frac{1}{x}} \right)^9}\) is

  1. 9
  2. 18
  3. 48
  4. 84

Answer (Detailed Solution Below)

Option 4 : 84

Binomial Theorem Question 8 Detailed Solution

Concept:

In the binomial expansion of (a + b)n, the term which does not involve any variable is said to be an independent term.

The general term in the binomial expansion of (a + b)n is given by: \({T_{r + 1}} = {^n}{C_r} \times {a^{n - r}} \times {b^r}\)

Calculation:

Given: \({\left( {{x^2} - \frac{1}{x}} \right)^9}\)

Let (r + 1)th be the independent term in the expansion of \({\left( {{x^2} - \frac{1}{x}} \right)^9}\).

We know that the general term in the binomial expansion of (a + b)n is given by:

\({T_{r + 1}} = {^n}{C_r} \times {a^{n - r}} \times {b^r}\)

Here, a = x2, n = 9 and b = 1 / x.

\(\Rightarrow {T_{r + 1}} = {\;^9}{C_r} \times {x^{2\left( {9 - r} \right)}} \times {\left( {\frac{1}{x}} \right)^r} = \;{\;^9}{C_r} \times {x^{18 - 3r}}\;\)

∵ The (r + 1)th term is the independent term in the expansion of \({\left( {{x^2} - \frac{1}{x}} \right)^9}\) ⇒ x18 – 3r = x0

⇒ 18 – 3r = 0 ⇒ r = 6

⇒ 7th term in the expansion of \({\left( {{x^2} - \frac{1}{x}} \right)^9}\) is the independent term.

We have to find the value of the 7th term in the expansion of \({\left( {{x^2} - \frac{1}{x}} \right)^9}\)

\(\Rightarrow {T_7} = {^9}{C_6} \times 1 = 84\)

Binomial Theorem Question 9:

Find the middle terms in the expansion of \(\rm \left(2x + \frac {1} {2x} \right)^{8}\)

  1. 7C4
  2. 8C4
  3. 9C4
  4. 8C5

Answer (Detailed Solution Below)

Option 2 : 8C4

Binomial Theorem Question 9 Detailed Solution

Concept:

General term: General term in the expansion of (x + y)n is given by

\(\rm {T_{\left( {r\; + \;1} \right)}} = \;{\;^n}{C_r} × {x^{n - r}} × {y^r}\)

 

Middle terms: The middle terms is the expansion of (x + y) n depends upon the value of n.

  • If n is even, then there is only one middle term i.e. \(\rm \left( {\frac{n}{2} + 1} \right){{\rm{\;}}^{th}}\) term is the middle term.
  • If n is odd, then there are two middle terms i.e. \(\rm {\left( {\frac{{n\; + \;1}}{2}} \right)^{th}}\;\)and \(\rm {\left( {\frac{{n\; + \;3}}{2}} \right)^{th}}\) are two middle terms.

 

 

Calculation:

Here, we have to find the middle terms in the expansion of \(\rm \left(2x + \frac {1} {2x} \right)^{8}\)

Here n = 8 (n is even number)

∴ Middle term = \(\rm \left( {\frac{n}{2} + 1} \right) = \left( {\frac{8}{2} + 1} \right) =5th\;term\)

T5 = T (4 + 1) = 8C4 × (2x) (8 - 4) × \(\rm \left(\frac {1}{2x}\right)^4\)

T5 =  8C4

Binomial Theorem Question 10:

Find the 4th term from the last in the expansion of \(\rm \left({x\over 3} - 3y\right)^7\).

  1. 108x3y4
  2. 105x3y5
  3. 105x3y4
  4. 105x2y5

Answer (Detailed Solution Below)

Option 3 : 105x3y4

Binomial Theorem Question 10 Detailed Solution

Concept:

Binomial Expansion:

  • (a + b)n = Ca0 b+ Ca1 bn-1 + Ca2 bn-2 + … + Car bn-r + … + Cn-1 an-1 b1 + Cn an b0, where C0, C1, …, Cn are the Binomial Coefficients defined as Cr = nCr = \(\rm \frac{n!}{r!(n-r)!}\).
  • The total number of terms in the expansion is n + 1.
  • The (r + 1)th term in the expansion is Tr+1 = Cr ar bn-r.

 

Calculation:

For the given expression \(\rm \left({x\over 3} - 3y\right)^7\), n = 7.

There will be 7 + 1 = 8 terms in the expansion of the above expression.

Expanding by reversing the order of the terms (i.e. a = -3y and b = \(\rm\frac{x}{3}\)), we have:

T5 = T4+1 = 7C4 \(\rm\left(\frac{x}{3}\right)^{7-4}\) (-3y)4  = 35 \(\rm\left(\frac{x^3}{3^3}\right)\) (34y4)  = 105x3y4.

Get Free Access Now
Hot Links: teen patti master gold apk teen patti palace teen patti master 51 bonus