Two Port Networks MCQ Quiz - Objective Question with Answer for Two Port Networks - Download Free PDF

Last updated on Apr 8, 2025

Latest Two Port Networks MCQ Objective Questions

Two Port Networks Question 1:

If a Two port Network “A” is cascaded with another two port Network B, then which of the following is true. 

  1. [Z] = [ZA] [ZB
  2. [Y] = [YA] × [YB
  3. [T] = [TA] × [TB
  4. [h] = [hA] [hB]

Answer (Detailed Solution Below)

Option 3 : [T] = [TA] × [TB

Two Port Networks Question 1 Detailed Solution

The correct option is 3

Concept:

Two-port network parameters such as Z, Y, h, and T (ABCD) describe the relationship between voltages and currents at the input and output ports of a network. When two such networks are cascaded, their parameters combine in specific ways depending on the type of parameter used.

Calculation:

When two two-port networks A and B are cascaded:

  • Impedance [Z] parameters cannot be directly multiplied. They are added when connected in series, not cascaded.
  • Admittance [Y] parameters are added for parallel connection, not cascade.
  • Hybrid [h] parameters cannot be used directly for cascading either.
  • Transmission (ABCD) [T] parameters are specifically designed for cascade connection. When two networks are cascaded, the overall transmission matrix is the product of individual matrices:

 

[T] = [TA] × [TB

Two Port Networks Question 2:

If a two-port network is represented with h-parameters, then the condition for reciprocity is _____.

  1. h11 = h22
  2. h12 = -h21
  3. h12 = h21
  4. h11 = -h22

Answer (Detailed Solution Below)

Option 2 : h12 = -h21

Two Port Networks Question 2 Detailed Solution

Explanation:

The h-parameters represent a two-port network with the following equations:

V1 = h11 * I1 + h12 * V2 I2 = h21 * I1 + h22 * V2

where:

  • V1 is the input voltage
  • I1 is the input current
  • V2 is the output voltage
  • I2 is the output current
  • h11, h12, h21, and h22 are the h-parameters

The condition for reciprocity in a two-port network represented by h-parameters is:

h12 = -h21

Therefore, the correct answer is h12 = -h21.

Two Port Networks Question 3:

qImage67931bebf1b7c681ab26ab1d

Find the Z parameters (Z11, Z12, Z21 Z22. respectively) for the above network. 

  1. 40Ω, 20Ω, 20Ω, 40Ω, 
  2. 40Ω, 30Ω, 30Ω, 40Ω, 
  3. 30Ω, 20Ω, 20Ω, 30Ω, 
  4. 30Ω, 30Ω, 30Ω, 30Ω, 

Answer (Detailed Solution Below)

Option 3 : 30Ω, 20Ω, 20Ω, 30Ω, 

Two Port Networks Question 3 Detailed Solution

Solution:

To find the Z parameters (Z11, Z12, Z21, Z22) for the given network, we need to understand the two-port network analysis. The Z-parameters or impedance parameters are defined by the following set of equations:

V1 = Z11I1 + Z12I2

V2 = Z21I1 + Z22I2

Where:

  • V1 is the input voltage
  • V2 is the output voltage
  • I1 is the input current
  • I2 is the output current

To determine the Z-parameters, we need to perform the following steps:

Step 1: Calculate Z11

Z11 is found by setting I2 = 0 (open-circuit output). Under this condition, the input impedance is:

Z11 = V1 / I1 (with I2 = 0)

Step 2: Calculate Z12

Z12 is found by setting I2 = 0 (open-circuit output). Under this condition, the reverse transfer impedance is:

Z12 = V1 / I2 (with I1 = 0)

Step 3: Calculate Z21

Z21 is found by setting I1 = 0 (open-circuit input). Under this condition, the forward transfer impedance is:

Z21 = V2 / I1 (with I2 = 0)

Step 4: Calculate Z22

Z22 is found by setting I1 = 0 (open-circuit input). Under this condition, the output impedance is:

Z22 = V2 / I2 (with I1 = 0)

Let's now solve these for the given options:

Correct Option Analysis:

The correct option is:

Option 3: 30Ω, 20Ω, 20Ω, 30Ω

We will validate this by calculating each of the Z parameters for the given network:

Z11:

Given that I2 = 0, V1 = Z11I1. If Z11 = 30Ω, then:

V1 = 30Ω × I1

Z12:

Given that I2 = 0 and assuming Z12 = 20Ω, then:

V1 = 20Ω × I2

Z21:

Given that I1 = 0 and assuming Z21 = 20Ω, then:

V2 = 20Ω × I1

Z22:

Given that I1 = 0, V2 = Z22I2. If Z22 = 30Ω, then:

V2 = 30Ω × I2

Thus, the Z-parameters are correctly given by option 3: Z11 = 30Ω, Z12 = 20Ω, Z21 = 20Ω, Z22 = 30Ω.

Let's analyze the other options to understand why they are incorrect:

Option 1: 40Ω, 20Ω, 20Ω, 40Ω

While Z12 and Z21 are the same as in the correct answer, Z11 and Z22 are different. For the given network, these values do not match the correct Z-parameter values.

Option 2: 40Ω, 30Ω, 30Ω, 40Ω

All the Z-parameter values here differ from the correct option. These values do not satisfy the given network's conditions.

Option 4: 30Ω, 30Ω, 30Ω, 30Ω

In this case, Z12 and Z21 are incorrectly given as 30Ω instead of 20Ω. This does not align with the correct Z-parameter values.

Conclusion:

By understanding the principles of Z-parameters and carefully analyzing the network, we have determined that the correct Z-parameters for the given network are Z11 = 30Ω, Z12 = 20Ω, Z21 = 20Ω, and Z22 = 30Ω, which corresponds to option 3.

Two Port Networks Question 4:

In a 2-port network, if Y11 is the short-circuit input admittance, then the Y21 parameter represents:

  1. Short-circuit forward current transfer ratio
  2. Open-circuit voltage transfer ratio 
  3. Short-circuit reverse current transfer ratio
  4. Short-circuit reverse voltage transfer ratio

Answer (Detailed Solution Below)

Option 1 : Short-circuit forward current transfer ratio

Two Port Networks Question 4 Detailed Solution

Concept

The admittance matrix equation can be written as:

\( \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \)

Where:

  • Y11: Short-circuit input admittance.
  • Y12: Short-circuit reverse transfer admittance.
  • Y21: Short-circuit forward transfer admittance.
  • Y22: Short-circuit output admittance.

Y21 represents the short-circuit forward current transfer ratio (admittance). It defines the relationship between the output current and input voltage when the output is short-circuited (V2 = 0).

Additional Information 

  • Option 2: Open-circuit voltage transfer ratio is not relevant to Y-parameters since they are defined under short-circuit conditions, not open-circuit.
  • Option 3: Short-circuit reverse current transfer ratio is represented by Y12, not Y21.
  • Option 4: Short-circuit reverse voltage transfer ratio is not a standard term used in the context of Y-parameters.

Understanding the Y-parameters and their significance in a 2-port network is crucial for analyzing and designing electrical circuits, especially in the context of network theory and electrical engineering.

Two Port Networks Question 5:

The open-circuit impedance matrix of the two port network shown in figure is -

qImage67821734d7a2dd6c6407590c

  1. \(\left[\begin{array}{ll} -2 & 1 \\ -8 & 3 \end{array}\right]\)
  2. \(\left[\begin{array}{cc} -2 & -8 \\ 1 & 3 \end{array}\right]\)
  3. \(\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]\)
  4. \(\left[\begin{array}{cc} 2 & -1 \\ -1 & 3 \end{array}\right]\)

Answer (Detailed Solution Below)

Option 1 : \(\left[\begin{array}{ll} -2 & 1 \\ -8 & 3 \end{array}\right]\)

Two Port Networks Question 5 Detailed Solution

Concept

The open circuit impedance parameters are given by:

\(V_1=Z_{11}I_1+Z_{12}I_2\)

\(V_2=Z_{21}I_1+Z_{22}I_2\)

Calculation

qImage678e90c913a817df25195fae

Applying KVL at the input side:

\(V_1=1{(I_1+I_2-3I_1)}\)

\(V_1=-2I_1+I_2\)

Applying KVL at the output side:

\(V_2=2{(I_2-3I_1)}-2I_1+I_2\)

\(V_2=-8I_1+3I_2\)

Comparing with the above expression we get:

open-circuit impedance matrix = \(\left[\begin{array}{ll} -2 & 1 \\ -8 & 3 \end{array}\right]\)

 

Top Two Port Networks MCQ Objective Questions

A short-circuit admittance matrix of a two-port network is

\(\left[ {\begin{array}{*{20}{c}} 0\\ {\frac{1}{2}} \end{array}\begin{array}{*{20}{c}} { - \frac{1}{2}}\\ 0 \end{array}} \right]\)

The two-port network is

  1. non-reciprocal and passive
  2. non-reciprocal and active
  3. reciprocal and passive
  4. reciprocal and active

Answer (Detailed Solution Below)

Option 1 : non-reciprocal and passive

Two Port Networks Question 6 Detailed Solution

Download Solution PDF

Concept:

Admittance Matrix:

  • It is also known as a short circuit matrix or Y matrix.
  • Y matrix is represented as:

62739776292c4dfc2e5637ae 16524698010801

\(\begin{bmatrix} Y_{11} & Y_{12}\\ Y_{21}& Y_{22} \end{bmatrix}\)\(\begin{bmatrix} Y_{A}+ Y_{C}& -Y_{C}\\ -Y_{C}& Y_{B}+ Y_{C} \end{bmatrix}\)

  • The condition of symmetry and reciprocity in Y parameters are given by:

Symmetry: \(Y_{11}= Y_{22}\)

Reciprocity: \(Y_{12}= Y_{21}\)

Explanation:

Given, that the Y matrix is \(\left[ {\begin{array}{*{20}{c}} 0\\ {\frac{1}{2}} \end{array}\begin{array}{*{20}{c}} { - \frac{1}{2}}\\ 0 \end{array}} \right]\)

Here, \(Y_{12}\neq Y_{21}\)

Hence Y matrix is not reciprocal.

The shunt admittance dissipates energy, hence it is a passive element.

Therefore, option 1 is correct.

A Two-Port Network is said to be symmetrical when the following equalities hold good

  1. Z11 = Z22 and Z12 = Z21
  2. Z11 = Z22
  3. Y12 = Y21
  4. Y11 = Y22 and Y12 = Y21

Answer (Detailed Solution Below)

Option 2 : Z11 = Z22

Two Port Networks Question 7 Detailed Solution

Download Solution PDF

A two-port network is said to be symmetrical if the input and output ports can be interchanged without altering the port voltages and currents.

A network is said to be reciprocal if the ratio of the response to the excitation is invariant to an interchange of the positions of the excitation and response of the network.

Conditions of reciprocity and symmetry in terms of different two-port parameters are:

Two Port Parameters

Condition for Symmetry

Condition for Reciprocal

Z Parameters

Z11 = Z22

Z12 = Z21

Y parameters

Y11 = Y22

Y12 = Y21

ABCD parameters

A = D

AD - BC =1

H parameters

h11h22 - h12h21 = 1

h12 = -h21

 

ABCD parameters are used in analysis of ______.

  1. Short circuit
  2. Electronic circuits
  3. Open circuit
  4. Transmission line

Answer (Detailed Solution Below)

Option 4 : Transmission line

Two Port Networks Question 8 Detailed Solution

Download Solution PDF

The application of different two port network parameters are shown below.

Two port network parameters

Application

Z parameters

Open circuit analysis

Y parameters

Short circuit analysis

h parameters

Electronic circuits

ABCD or T parameters

Transmission lines

Consider the following standard symbols for two-port parameters:

1. h12 and h21 are dimensionless

2. h11 and B have dimension of ohms

3. AD is dimensionless

4. C is dimensionless

Which of the above are correct?

  1. 1, 2 and 3 only
  2. 1, 2 and 4 only
  3. 3 and 4 only
  4. 1, 2, 3 and 4

Answer (Detailed Solution Below)

Option 1 : 1, 2 and 3 only

Two Port Networks Question 9 Detailed Solution

Download Solution PDF

Two-port network parameters

Equations

Z parameters

V1 = Z11I1 + Z12I2

V2 = Z21I1 + Z22I2

Y parameters

I1 = Y11V1 + Y12V2

I2 = Y21V1 + Y22V2

h parameters

V1 = h11I1 + h12V2

I2 = h21I1 + h22V2

g parameters

I1 = g11V1 + g12I2

V2 = g21V1 + g22I2

T parameters (ABCD)

V1 = AV2 – BI2

I1 = CV2 – DI2

Inverse T parameters

V2 = A’V1 – B’I1

I2 = C’V1 – D’I1

 

h12 = V1/V2 → dimensionless

h21 = I2/I1 → dimensionless

h11 = V1/I1 → ohms

B = V1/I2 → ohms

C = I1/V2 → mho

AD → dimensionless

Find Z parameter Z11, Z22 in given network -

F1  Madhuri Engineering 24.06.2022 D33

  1. Z11 = 25Ω, Z22 = 20Ω
  2. Z11 = 20Ω, Z22 = 20Ω
  3. Z11 = 25Ω, Z22 = 30Ω
  4. Z11 = 15Ω, Z22 = 30Ω

Answer (Detailed Solution Below)

Option 3 : Z11 = 25Ω, Z22 = 30Ω

Two Port Networks Question 10 Detailed Solution

Download Solution PDF

Concept:

Z parameter:

We will get the following set of two equations by considering the variables V1 & V2 as dependent and I1 & I2 as an independent. The coefficients of independent variables, I1 and I2 are called Z parameters.

V1 = Z11I+Z12I2

V2 = Z21I1+ Z22I2

Calculation:

F1  Madhuri Engineering 24.06.2022 D34

Apply KVL on loop 1:

 V1 = 5I1 + 20(I1 + I2)

⇒ V1 = 25I1 + 20I2 ------------ (1)

Apply KVL on loop 2:

⇒  V2 = 10I2 + 20(I1 + I2)

⇒ V2 = 20I1 + 30I2 -------------(2)

Compare equation 1 and 2 with Z parameter equations:

 Z11 = 25Ω, Z22 = 30Ω

Alternate Method For a T equivalent network as shown below 

F1  Madhuri Engineering 24.06.2022 D35

Z11 = (Z1 + Z3) = (5+20) = 25Ω 

Z22 = (Z2 + Z3) = (10 + 20) = 30Ω 

Z12 = Z21 = Z3 = 20Ω 

For the 2-port network shown, determine the value of transfer impedance Z21.

F1 U.B Deepak 28.01.2020 D 14

  1. 1 Ω
  2. 3 Ω
  3. 4 Ω
  4. 2 Ω

Answer (Detailed Solution Below)

Option 2 : 3 Ω

Two Port Networks Question 11 Detailed Solution

Download Solution PDF

Concept:

The Z-parameter for a T-equivalent two-port network is,

F4 U.B Madhu 23.05.20 D1

\(\left[ Z \right] = \left[ {\begin{array}{*{20}{c}} {{Z_{11}}}&{{Z_{12}}}\\ {{Z_{21}}}&{{Z_{22}}} \end{array}} \right]\)

Where

Z11 is open circuit impedance

Z12 = Z21 = Transfer impedance

Z22 = Open circuit output impedance

Calculation:

By using delta to star conversion, the given circuit can be reduced.

F4 U.B Madhu 23.05.20 D2

\({R_1} = \frac{{4 \times 2}}{{4 + 2 + 2}} = \frac{8}{8} = 1\;{\rm{\Omega }}\)

\({R_2} = \frac{{2 \times 2}}{{4 + 2 + 2}} = \frac{4}{8} = \frac{1}{2}\;{\rm{\Omega }}\)

\({R_3} = \frac{{4 \times 2}}{{4 + 2 + 2}} = \frac{8}{8} = 1\;{\rm{\Omega }}\)

The modified circuit is,

F4 U.B Madhu 23.05.20 D3

Now, by comparing the above circuit with T-equivalent network of Z-parameter matrix,

\(\left[ Z \right] = \left[ {\begin{array}{*{20}{c}} 4&3\\ 3&{3.5} \end{array}} \right]\)

Transfer impedance = Z21 = 3 Ω

For a two-port network, the condition of symmetry in terms of z-parameters is

  1. z12 = z21
  2. z11 = z22
  3. z11 = z21
  4. z12 = z22

Answer (Detailed Solution Below)

Option 2 : z11 = z22

Two Port Networks Question 12 Detailed Solution

Download Solution PDF

A two-port network is said to be symmetrical if the input and output ports can be interchanged without altering the port voltages and currents.

A network is said to be reciprocal if the ratio of the response to the excitation is invariant to an interchange of the positions of the excitation and response of the network.

Conditions of reciprocity and symmetry in terms of different two-port parameters are:

Two Port Parameters

Condition for Symmetry

Condition for Reciprocal

Z Parameters

Z11 = Z22

Z12 = Z21

Y parameters

Y11 = Y22

Y12 = Y21

ABCD parameters

A = D

AD - BC =1

H parameters

h11h22 - h12h21 = 1

h12 = -h21

 

For the two-port network shown below, the short-circuit admittance parameter matrix is 

F38 Neha B 24-5-2021 Swati D3

  1. \(\begin{bmatrix} 4 & -2 \\\ -2 & 4 \end{bmatrix}S\)
  2. \(\begin{bmatrix} 1 & -0.5 \\\ -0.5 & 1 \end{bmatrix}S\)
  3. \(\begin{bmatrix} 1 & 0.5 \\\ 0.5 & 1 \end{bmatrix}S\)
  4. \(\begin{bmatrix} 4 & 2 \\\ 2 & 4 \end{bmatrix}S\)

Answer (Detailed Solution Below)

Option 1 : \(\begin{bmatrix} 4 & -2 \\\ -2 & 4 \end{bmatrix}S\)

Two Port Networks Question 13 Detailed Solution

Download Solution PDF

Concept:

Y parameters

These are also called the admittance parameters.

The Y parameters for the two-port network are shown as:

\(\left[ {\begin{array}{*{20}{c}} {{I_1}}\\ {{I_2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{Y_{11}}}&{{Y_{12}}}\\ {{Y_{21}}}&{{Y_{22}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{V_2}} \end{array}} \right]\)

I1 = Y11V1 + Y12V2

I2 = Y21V1 + Y22V2

Calculation:

When V2 = 0 or short circuit port 2

F38 Neha B 24-5-2021 Swati D4

Then, I1 = Y11 V1

I2 = Y21 V1

V1 and I1 relation can be drawn from current division rule as

\(V_1 = 0.5\times ({\frac{0.5}{0.5+0.5}})I_1\)

V1 = 0.25I1

I1 = 4V1

Y11 = 4 S

similarly, V1 and I2 relation can be drawn as

V1 = 0.5(-I2)

I2 = -2V1

Y21 = -2 S

By applying the same procedure for port 1

When V1 = 0 or short circuit port 1

F38 Neha B 24-5-2021 Swati D5

Then, I1 = Y12 V2

I2 = Y22 V2

V2 and I2 relation can be drawn from current division rule as

\(V_2 = 0.5\times ({\frac{0.5}{0.5+0.5}})I_2\)

V2 = 0.25I2

I2 = 4V2

Y22 = 4 S

similarly, V1 and I2 relation can be drawn as

V2 = 0.5(-I1)

I1 = -2V2

Y12 = -2 S

\( \left[ {\begin{array}{*{20}{c}} {{Y_{11}}}&{{Y_{12}}}\\ {{Y_{21}}}&{{Y_{22}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {4}&{-2}\\ {-2}&{4} \end{array}} \right]~S\)

Hence option 1 is correct

 

For the given π network 

F38 Neha B 24-5-2021 Swati D6

Y parameter can be calculated by

\(\left[ {\begin{array}{*{20}{c}} {{I_1}}\\ {{I_2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{Y_1} + {Y_2}}&{ - {Y_2}}\\ { - {Y_2}}&{{Y_2} + {Y_3}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{V_2}} \end{array}} \right]\\ \)

Substituting the value of Y1, Y2, and Y3

\(= \left[ {\begin{array}{*{20}{c}} {\left( {2 +2} \right)}&{\left( { - 2} \right)}\\ {\left( { - 2} \right)}&{\left( {2 + 2} \right)} \end{array}} \right] \\\)

\(= \left[ {\begin{array}{*{20}{c}} {4}&{ - 2}\\ { - 2}&{4} \end{array}} \right]~S\)

When port 1 of a two port cirucit is short circuited, I1 = 4I2 and V2 = 0.25I2, which of the following is true?

  1. Y11 = 4
  2. Y12 = 16
  3. Y21 = 16
  4. Y22 = 0.25

Answer (Detailed Solution Below)

Option 2 : Y12 = 16

Two Port Networks Question 14 Detailed Solution

Download Solution PDF

Concept:

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

When port 1 is short cirucited, i.e. V1 = 0,

I1 = Y12 V2 and I2 = Y22 V2

Calculation:

The given equations are:

I1 = 4I2 and V2 = 0.25 I2

⇒ I2 = 4V2 ⇒ Y22 = 4

I1 = 4 (4V2) = 16 V2

Y12 = 16

The y-parameters for the network shown in the figure can be represented by

F1 U.B Deepak 21.11.2019 D 1

  1. \(\left[ y \right] = \left[ {\begin{array}{*{20}{c}} { - \frac{1}{5}}&{\frac{1}{5}} \\ {\frac{1}{5}}&{ - \frac{1}{5}} \end{array}} \right]\mho \)
  2. \(\left[ y \right] = \left[ {\begin{array}{*{20}{c}} {\frac{1}{5}}&{ - \frac{1}{5}} \\ { - \frac{1}{5}}&{\frac{1}{5}} \end{array}} \right]\mho \)
  3. \(\left[ y \right] = \left[ {\begin{array}{*{20}{c}} { - 5}&5 \\ 5&{ - 5} \end{array}} \right]\mho \)
  4. \(\left[ y \right] = \left[ {\begin{array}{*{20}{c}} 5&{ - 5} \\ { - 5}&5 \end{array}} \right]\mho \)

Answer (Detailed Solution Below)

Option 2 : \(\left[ y \right] = \left[ {\begin{array}{*{20}{c}} {\frac{1}{5}}&{ - \frac{1}{5}} \\ { - \frac{1}{5}}&{\frac{1}{5}} \end{array}} \right]\mho \)

Two Port Networks Question 15 Detailed Solution

Download Solution PDF

Concept:

Y parameter:

I1 = V1 Y11 + V2 Y12

I2 = V1 Y21 + V2 Y22

\({I_1} = \frac{{{V_1} - {V_2}}}{Z}\)

\({I_1} = \frac{{{V_1}}}{Z} - \frac{1}{Z}\;{V_2}\)     ...1)

\({I_2} = - \frac{1}{Z}\;{V_1} + \frac{1}{Z}\;{V_2}\)     ...2)

\(\left[ y \right] = \left[ {\begin{array}{*{20}{c}} {\frac{1}{Z}}&{ - \frac{1}{Z}} \\ { - \frac{1}{Z}}&{\frac{1}{Z}} \end{array}} \right]\)

Calculation:

For the given question Z = 5 Ω

\(\therefore \left[ y \right] = \left[ {\begin{array}{*{20}{c}} {\frac{1}{5}}&{ - \frac{1}{5}} \\ { - \frac{1}{5}}&{\frac{1}{5}} \end{array}} \right]\)

Get Free Access Now
Hot Links: teen patti sweet teen patti vip teen patti master king teen patti gold apk download teen patti gold download apk