Square Identity MCQ Quiz - Objective Question with Answer for Square Identity - Download Free PDF

Last updated on Jun 5, 2025

Latest Square Identity MCQ Objective Questions

Square Identity Question 1:

The value of [(.253*.253-.253*.067+.067*.067)/(.253*.253*.253+.067*.067*.067)] is:

  1. 3.125
  2. 64
  3. 1.128
  4. 1

Answer (Detailed Solution Below)

Option 1 : 3.125

Square Identity Question 1 Detailed Solution

Given:

\(\dfrac{(.253 \times .253 - .253 \times .067 + .067 \times .067)}{(.253 \times .253 \times .253 + .067 \times .067 \times .067)}\)

Formula used:

\(\dfrac{a^2 - ab + b^2}{a^3 + b^3}\) = \(\dfrac{{a^2 - ab + b^2}}{(a + b)(a^2 - ab + b^2)}\) = \(\dfrac{1}{a + b}\)

Calculation:

Let a = 0.253 and b = 0.067

\(\dfrac{{(0.253^2 - 0.253 \times 0.067 + 0.067^2)}}{(0.253 + 0.067)(0.253^2 - 0.253 \times 0.067 + 0.067^2)}\)

\(\dfrac{1}{0.253 + 0.067}\) = (1 / 0.32)

\(\)3.125

∴ The value of the given expression is 3.125.

Square Identity Question 2:

If a + b = 12 and 4ab = 140, then what is the value of a2 + b2?

  1. 144
  2. 74 
  3. 4
  4. 37

Answer (Detailed Solution Below)

Option 2 : 74 

Square Identity Question 2 Detailed Solution

Given:

If a + b = 12 and 4ab = 140

Formula used:

(a + b)2 = a2 + b2 + 2ab

Calculation:

(a + b)2 = 122

⇒ 144 = a2 + b2 + 2ab

Since, 4ab = 140

⇒ ab = 35

⇒ 144 = a2 + b2 + 2 × 35

⇒ 144 = a2 + b2 + 70

⇒ a2 + b2 = 74

∴ The correct answer is option 2.

Square Identity Question 3:

Simplify (5z - 7y)2 + (7z + 5y)2 - 49z2

  1. 30z2 + 83y2
  2. 35z2 + 70y2
  3. 26z2 + 82y2
  4. 25z2 + 74y2

Answer (Detailed Solution Below)

Option 4 : 25z2 + 74y2

Square Identity Question 3 Detailed Solution

Given:

Simplify (5z - 7y)2 + (7z + 5y)2 - 49z2

Formula used:

(a + b)2 = a2 + 2ab + b2

(a - b)2 = a2 - 2ab + b2

Calculation:

(5z - 7y)2 + (7z + 5y)2 - 49z2

⇒ (25z2 - 2 × 5z × 7y + 49y2) + (49z2 + 2 × 7z × 5y + 25y2) - 49z2

⇒ 25z2 - 70zy + 49y2 + 49z2 + 70zy + 25y2 - 49z2

⇒ 25z2 + 49z2 - 49z2 + 49y2 + 25y2

⇒ 25z2 + 74y2

∴ The correct answer is option (4).

Square Identity Question 4:

If x = 4 + √6 and y = 4 - √6 then the value of x2 + y2 is: 

  1. 51
  2. 42
  3. 44
  4. 43

Answer (Detailed Solution Below)

Option 3 : 44

Square Identity Question 4 Detailed Solution

Given:

If x = 4 + √6 and y = 4 - √6

Formula used:

x2 + y2 = (x + y)2 - 2xy

Calculation:

x = 4 + √6 and y = 4 - √6

x + y = (4 + √6) + (4 - √6) = 8

x × y = (4 + √6)(4 - √6) = 42 - (√6)2 = 16 - 6 = 10

⇒ x2 + y2 = (8)2 - 2 × 10

⇒ x2 + y2 = 64 - 20

⇒ x2 + y2 = 44

∴ The correct answer is option (3).

Square Identity Question 5:

Simplify  \(\frac{2.46\times 2.46-1.46\times 1.46}{2.46-1.46}\) and select the most appropriate fraction. 

  1. \(\frac{392}{10}\)
  2. \(\frac{392}{100}\)
  3. \(\frac{392}{10000}\)
  4. \(\frac{392}{1000}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{392}{100}\)

Square Identity Question 5 Detailed Solution

Given:

\(\dfrac{(2.46 \times 2.46-1.46 \times 1.46)}{(2.46-1.46)}\)

Formula used:

\((a^2 - b^2) = (a + b)(a - b)\)

Calculation:

⇒ \(\dfrac{(2.46 + 1.46)(2.46 - 1.46)}{(2.46-1.46)}\)

⇒ \(\dfrac{(2.46^2 - 1.46^2)}{(2.46-1.46)}\)

⇒ \((2.46 + 1.46)\)

⇒ 3.92

⇒ \(\dfrac{392}{100}\)

∴ The correct answer is option (2).

Top Square Identity MCQ Objective Questions

Simplify: \(\sqrt {36{x^2} - 108x + 81} \).

  1. 6x - 9
  2. 2x - 9
  3. 5x - 9
  4. 3x - 3

Answer (Detailed Solution Below)

Option 1 : 6x - 9

Square Identity Question 6 Detailed Solution

Download Solution PDF

Calculations:

√(36x² - 108x + 81)

=√[(6x)² - 2 × 6 × 9x + (9)²]

= √[6x - 9]²

= 6x - 9

Hence, The Required value is 6x - 9.

If a + b = 5 and ab = 6, then find 3(a2 + b2).

  1. 39
  2. 48
  3. 26
  4. 13

Answer (Detailed Solution Below)

Option 1 : 39

Square Identity Question 7 Detailed Solution

Download Solution PDF

Given:

a + b = 5 and ab = 6

Concept used:

a2 + b2 = (a + b)2 - 2ab

Calculation:

3(a2 + b2)

⇒ 3{(a + b)2 - 2ab}

⇒ 3{52 - 2 × 6}

⇒ 39

∴ The required value is 39.

The value of [(.253*.253-.253*.067+.067*.067)/(.253*.253*.253+.067*.067*.067)] is:

  1. 3.125
  2. 64
  3. 1.128
  4. 1

Answer (Detailed Solution Below)

Option 1 : 3.125

Square Identity Question 8 Detailed Solution

Download Solution PDF

Given:

\(\dfrac{(.253 \times .253 - .253 \times .067 + .067 \times .067)}{(.253 \times .253 \times .253 + .067 \times .067 \times .067)}\)

Formula used:

\(\dfrac{a^2 - ab + b^2}{a^3 + b^3}\) = \(\dfrac{{a^2 - ab + b^2}}{(a + b)(a^2 - ab + b^2)}\) = \(\dfrac{1}{a + b}\)

Calculation:

Let a = 0.253 and b = 0.067

\(\dfrac{{(0.253^2 - 0.253 \times 0.067 + 0.067^2)}}{(0.253 + 0.067)(0.253^2 - 0.253 \times 0.067 + 0.067^2)}\)

\(\dfrac{1}{0.253 + 0.067}\) = (1 / 0.32)

\(\)3.125

∴ The value of the given expression is 3.125.

If a + b = 12 and 4ab = 140, then what is the value of a2 + b2?

  1. 144
  2. 74 
  3. 4
  4. 37

Answer (Detailed Solution Below)

Option 2 : 74 

Square Identity Question 9 Detailed Solution

Download Solution PDF

Given:

If a + b = 12 and 4ab = 140

Formula used:

(a + b)2 = a2 + b2 + 2ab

Calculation:

(a + b)2 = 122

⇒ 144 = a2 + b2 + 2ab

Since, 4ab = 140

⇒ ab = 35

⇒ 144 = a2 + b2 + 2 × 35

⇒ 144 = a2 + b2 + 70

⇒ a2 + b2 = 74

∴ The correct answer is option 2.

Square Identity Question 10:

Which of the following can be the value of k, if \(\frac{(88 \div 8 \times k - 3 \times 3)}{(6^2 - 7 \times 5 + k^2)} = 1\)

  1. 1,10
  2. 4,7
  3. 3,10
  4. 2,7

Answer (Detailed Solution Below)

Option 1 : 1,10

Square Identity Question 10 Detailed Solution

Given:

(88 ÷ 8 × k - 3 × 3) / (62 - 7 × 5 + k2) = 1

Formula used:

Equation: Numerator = Denominator

Calculations:

Numerator: 88 ÷ 8 × k - 3 × 3

⇒ 11k - 9

Denominator: 62 - 7 × 5 + k2

⇒ 36 - 35 + k2

⇒ 1 + k2

Setting the equation:

11k - 9 = 1 + k2

⇒ k2 - 11k + 10 = 0

Using the quadratic formula:

k = (-b ± √(b2 - 4ac)) / (2a)

Where a = 1, b = -11, c = 10

⇒ k = (11 ± √((-11)2 - 4 × 1 × 10)) / (2 × 1)

⇒ k = (11 ± √(121 - 40)) / 2

⇒ k = (11 ± √81) / 2

⇒ k = (11 ± 9) / 2

Values of k:

⇒ k = (20 / 2) = 10

⇒ k = (2 / 2) = 1

∴ The possible values of k are 10 and 1.

Square Identity Question 11:

Simplify: \(\sqrt {36{x^2} - 108x + 81} \).

  1. 6x - 9
  2. 2x - 9
  3. 5x - 9
  4. 3x - 3

Answer (Detailed Solution Below)

Option 1 : 6x - 9

Square Identity Question 11 Detailed Solution

Calculations:

√(36x² - 108x + 81)

=√[(6x)² - 2 × 6 × 9x + (9)²]

= √[6x - 9]²

= 6x - 9

Hence, The Required value is 6x - 9.

Square Identity Question 12:

If a + b = 5 and ab = 6, then find 3(a2 + b2).

  1. 39
  2. 48
  3. 26
  4. 13

Answer (Detailed Solution Below)

Option 1 : 39

Square Identity Question 12 Detailed Solution

Given:

a + b = 5 and ab = 6

Concept used:

a2 + b2 = (a + b)2 - 2ab

Calculation:

3(a2 + b2)

⇒ 3{(a + b)2 - 2ab}

⇒ 3{52 - 2 × 6}

⇒ 39

∴ The required value is 39.

Square Identity Question 13:

Simplify \(\frac{1.5 \times 1.5 + 2.5 \times 2.5 + 3.5 \times 3.5 + 2 \times 1.5 \times 2.5 + 2 \times 2.5 \times 3.5 + 2 \times 1.5 \times 3.5}{1.5 + 2.5 + 3.5}\).

  1. 9.5
  2. 6.5
  3. 8.5
  4. 7.5

Answer (Detailed Solution Below)

Option 4 : 7.5

Square Identity Question 13 Detailed Solution

Given:

Expression = \(\frac{1.5 \times 1.5 + 2.5 \times 2.5 + 3.5 \times 3.5 + 2 \times 1.5 \times 2.5 + 2 \times 2.5 \times 3.5 + 2 \times 1.5 \times 3.5}{1.5 + 2.5 + 3.5}\)

Formula used:

The given expression can be simplified by using the identity for the sum of squares and products:

\(a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = (a + b + c)^2\)

Here, a = 1.5, b = 2.5, and c = 3.5.

Calculations:

⇒ \(\frac{1.5 \times 1.5 + 2.5 \times 2.5 + 3.5 \times 3.5 + 2 \times 1.5 \times 2.5 + 2 \times 2.5 \times 3.5 + 2 \times 1.5 \times 3.5}{1.5 + 2.5 + 3.5}\)

⇒ \(\frac{1.5^2 + 2.5^2 + 3.5^2 + 2 \times 1.5 \times 2.5 + 2 \times 2.5 \times 3.5 + 2 \times 1.5 \times 3.5}{1.5 + 2.5 + 3.5}\)

Using formula, \(a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = (a + b + c)^2\)

⇒ \(\frac{(1.5 + 2.5 + 3.5)^2}{1.5 + 2.5 + 3.5}\)

⇒ \(1.5 + 2.5 + 3.5\)

(a + b + c) = 1.5 + 2.5 + 3.5 = 7.5

The value of the given expression is 7.5.

Square Identity Question 14:

If a2 + b2 = 148 and ab = 54 , then find the value of \(\frac{a+b}{a-b}\)

  1. \(\frac{8}{\sqrt{10}}\)
  2. \(\frac{2}{\sqrt{10}}\)
  3. \(8\sqrt{7}\)
  4. \(5\sqrt{3}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{8}{\sqrt{10}}\)

Square Identity Question 14 Detailed Solution

Given:

a2 + b2 = 148

ab = 54

Formula used:

(a + b)2 = a2 + b2 + 2ab

(a - b)2 = a2 + b2 - 2ab

\(\frac{a+b}{a-b} = \sqrt{\frac{(a+b)^2}{(a-b)^2}}\)

Calculations:

(a + b)2 = 148 + 2 × 54

⇒ (a + b)2 = 148 + 108 = 256

(a - b)2 = 148 - 2 × 54

⇒ (a - b)2 = 148 - 108 = 40

\(\frac{a+b}{a-b} = \sqrt{\frac{(a+b)^2}{(a-b)^2}}\)

\(\frac{a+b}{a-b} = \sqrt{\frac{256}{40}} \)

\(\frac{a+b}{a-b} = \frac{8}{\sqrt{10}}\)

Verification of options:

Option 1: \(\frac{8}{\sqrt{10}}\) (Correct)

Option 2: \(\frac{2}{\sqrt{10}}\) (Incorrect)

Option 3: \(8\sqrt{7}\) (Incorrect)

Option 4: \(5\sqrt{3}\) (Incorrect)

∴ The correct answer is option (1).

Square Identity Question 15:

If x = 4 + √6 and y = 4 - √6 then the value of x2 + y2 is: 

  1. 51
  2. 42
  3. 44
  4. 43

Answer (Detailed Solution Below)

Option 3 : 44

Square Identity Question 15 Detailed Solution

Given:

If x = 4 + √6 and y = 4 - √6

Formula used:

x2 + y2 = (x + y)2 - 2xy

Calculation:

x = 4 + √6 and y = 4 - √6

x + y = (4 + √6) + (4 - √6) = 8

x × y = (4 + √6)(4 - √6) = 42 - (√6)2 = 16 - 6 = 10

⇒ x2 + y2 = (8)2 - 2 × 10

⇒ x2 + y2 = 64 - 20

⇒ x2 + y2 = 44

∴ The correct answer is option (3).

Get Free Access Now
Hot Links: teen patti all games teen patti vip teen patti wala game teen patti refer earn