Multiplication MCQ Quiz - Objective Question with Answer for Multiplication - Download Free PDF

Last updated on Apr 30, 2025

Multiplication MCQs address the basic and advanced aspects of multiplication, including multiplication of whole numbers, decimals, fractions, and complex numbers. In addition to enhancing your calculation speed and accuracy, these MCQs can help you build a strong foundation in arithmetic, algebra, and number theory, which are all crucial for higher mathematics. They serve as an excellent resource for learners of all ages, regardless of the complexity of the mathematical problems they encounter. These MCQs are ideal for competitive exams that include a mathematical or quantitative reasoning component. Boost your preparation by solving Multiplication MCQs with answers right away.

Latest Multiplication MCQ Objective Questions

Multiplication Question 1:

Consider the following in respect of the matrices  \(\rm P=\begin{bmatrix}0&c&-b\\\ -c&0&a\\\ b&-a&0\end{bmatrix}\ and\ \rm Q=\begin{bmatrix}a^2&ab&ac\\\ ab&b^2&bc\\\ ac&bc&c^2\end{bmatrix}\)

I. PQ is a null matrix. 

II. QP is an identity matrix of order 3. 

III. PQ = QP

Which of the above is/are correct? 

  1. I only 
  2. II only
  3. I and III
  4. II and III

Answer (Detailed Solution Below)

Option 3 : I and III

Multiplication Question 1 Detailed Solution

Concept:

Matrix Multiplication and Properties:

  • Matrix multiplication involves the dot product of rows and columns.
  • A null matrix is a matrix in which all elements are zero.
  • An identity matrix is a square matrix with 1's on the diagonal and 0's elsewhere.
  • For matrices P and Q, PQ = QP does not generally hold unless P and Q commute.

Matrix Definitions:

  • Null Matrix: A matrix where all elements are zero.
  • Identity Matrix: A square matrix with 1's on the main diagonal and 0's elsewhere.

 

Calculation:

\(\rm P=\begin{bmatrix}0&c&-b\\\ -c&0&a\\\ b&-a&0\end{bmatrix}\ and\ \rm Q=\begin{bmatrix}a^2&ab&ac\\\ ab&b^2&bc\\\ ac&bc&c^2\end{bmatrix}\)

⇒ PQ = \(=\begin{bmatrix}0&0&0\\\ 0&0&0\\\ 0&0&0\end{bmatrix}\ \)

⇒QP = \(=\begin{bmatrix}0&0&0\\\ 0&0&0\\\ 0&0&0\end{bmatrix}\ \)

Then PQ = QP

∴ Option (c) is correct

Multiplication Question 2:

Let X be a matrix of order 3 x 3, Y be a matrix of order 2 x 3 and Z be a matrix of order 3 × 2. Which of the following statements are correct?

I. (ZY)X is defined and is a square matrix of order 3.

II. Y(XZ) is defined and is a square matrix of order 2.

III. X(YZ) is not defined.

Select the answer using the code given below.

  1. I and II only
  2. II and III only
  3. I and III only
  4. I, II and III

Answer (Detailed Solution Below)

Option 4 : I, II and III

Multiplication Question 2 Detailed Solution

Concept:

Matrix Multiplication:

  • Matrix multiplication is defined only when the number of columns in the first matrix is equal to the number of rows in the second matrix.
  • For two matrices \( A_{m \times n} \) and \( B_{n \times p} \), their product \( AB \) will result in a matrix \( C_{m \times p} \).
  • In general, the product of \( X \) and \( Y \) is defined if and only if the number of columns in \( X \) equals the number of rows in \( Y \).

Calculation:

 

We have the following matrix operations:

\( A_{m \times n} B_{n \times p} = (AB)_{m \times p} \)

Now, consider the matrix multiplications:

\([Z_{3 \times 2} . Y_{2\times3}].X_{3 \times 3}] = [ZYX]_{3 \times 3}\)

\( Y_{2 \times 3} [X_{3 \times 3} Z_{3 \times 2}] = [YXZ]_{2 \times 2} \)

Finally, we observe that:

\( X_{3 \times 3} [Y_{2 \times 3} Z_{3 \times 2}] = X_{3 \times 3} [YZ]_{2 \times 2} \)

Conclusion:

\(\text{No. of columns in X} \neq \text{No. of rows in (YZ)}\)

Hence, X(YZ) is not defined.

∴ the Correct answer is Option 4

Multiplication Question 3:

If \(\rm A=\begin{bmatrix}i&0\\\ 0&i\end{bmatrix}\) and \(\rm B=\begin{bmatrix}0&-i\\\ -i&0\end{bmatrix}\) then (A + B) (A – B) is 

  1. A2 - B2
  2. A2 + B2
  3. A2 - B2 + BA + AB
  4. AB
  5. None of these

Answer (Detailed Solution Below)

Option 1 : A2 - B2

Multiplication Question 3 Detailed Solution

Calculation:

Given, \(\rm A=\begin{bmatrix}i&0\\\ 0&i\end{bmatrix}\) and \(\rm B=\begin{bmatrix}0&-i\\\ -i&0\end{bmatrix}\)

∴ A + B = \(\begin{bmatrix}i&0\\\ 0&i\end{bmatrix}+\begin{bmatrix}0&-i\\\ -i&0\end{bmatrix}\) = \(\begin{bmatrix}i&-i\\\ -i&i\end{bmatrix}\)

A  B = \(\begin{bmatrix}i&0\\\ 0&i\end{bmatrix}-\begin{bmatrix}0&-i\\\ -i&0\end{bmatrix}\) = \(\begin{bmatrix}i&i\\\ i&i\end{bmatrix}\)

∴ (A + B) (A – B) = \(\begin{bmatrix}i&-i\\\ -i&i\end{bmatrix}\begin{bmatrix}i&i\\\ i&i\end{bmatrix}\) = \(\begin{bmatrix}i^2-i^2&i^2-i^2\\\ -i^2+i^2&-i^2+i^2\end{bmatrix}\) = \(\begin{bmatrix}0&0\\\ 0&0\end{bmatrix}\)

Now, A2\(\begin{bmatrix}i&0\\\ 0&i\end{bmatrix}\begin{bmatrix}i&0\\\ 0&i\end{bmatrix}\) = \(\begin{bmatrix}i^2&0\\\ 0&i^2\end{bmatrix}\) = \(\begin{bmatrix}-1&0\\\ 0&-1\end{bmatrix}\)

B2 = \(\begin{bmatrix}0&-i\\\ -i&0\end{bmatrix}\begin{bmatrix}0&-i\\\ -i&0\end{bmatrix}\) = \(\begin{bmatrix}i^2&0\\\ 0&i^2\end{bmatrix}\) = \(\begin{bmatrix}-1&0\\\ 0&-1\end{bmatrix}\)

⇒ A2 - B2 = \(\begin{bmatrix}-1&0\\\ 0&-1\end{bmatrix}-\begin{bmatrix}-1&0\\\ 0&-1\end{bmatrix}\) = \(\begin{bmatrix}0&0\\\ 0&0\end{bmatrix}\)

⇒ (A + B) (A – B) = A2 - B2 

∴ The value of (A + B) (A – B) is A2 - B2 

The correct answer is Option 1. 

Multiplication Question 4:

If A is a square matrix and I is an identity matrix such that A2 = A, then A(I – 2A)3 + 2A3 is equal to : 

  1. I + A
  2. I + 2A
  3. I – A
  4. A

Answer (Detailed Solution Below)

Option 4 : A

Multiplication Question 4 Detailed Solution

Concept:

  • We are given a matrix A such that A² = A. This means A is an idempotent matrix.
  • We are asked to evaluate: A(I − 2A)³ + 2A³
  • We will use the identity A² = A to simplify higher powers like A³.

 

Calculation:

Step 1: Use A² = A ⇒ A³ = A·A² = A·A = A

So, A³ = A

Now simplify the expression: A(I − 2A)³ + 2A³

Step 2: Expand (I − 2A)³ using binomial expansion:

(I − 2A)³ = I − 3(2A) + 3(2A)² − (2A)³

= I − 6A + 12A² − 8A³

Now substitute A² = A and A³ = A:

(I − 2A)³ = I − 6A + 12A − 8A = I − 2A

Step 3: Multiply A with the simplified expression

A(I − 2A)³ = A(I − 2A) = A − 2A²

Since A² = A ⇒ A − 2A = −A

Step 4: Add 2A³

A(I − 2A)³ + 2A³ = −A + 2A = A

∴ The correct answer is: (4) A

Multiplication Question 5:

If \(\rm A=\begin{bmatrix}i&0\\\ 0&i\end{bmatrix}\) and \(\rm B=\begin{bmatrix}0&-i\\\ -i&0\end{bmatrix}\) then (A + B) (A – B) is 

  1. A2 - B2
  2. A2 + B2
  3. A2 - B2 + BA + AB
  4. A2 - B2 + BA 
  5. None of these

Answer (Detailed Solution Below)

Option 1 : A2 - B2

Multiplication Question 5 Detailed Solution

Calculation:

Given, \(\rm A=\begin{bmatrix}i&0\\\ 0&i\end{bmatrix}\) and \(\rm B=\begin{bmatrix}0&-i\\\ -i&0\end{bmatrix}\)

∴ A + B = \(\begin{bmatrix}i&0\\\ 0&i\end{bmatrix}+\begin{bmatrix}0&-i\\\ -i&0\end{bmatrix}\) = \(\begin{bmatrix}i&-i\\\ -i&i\end{bmatrix}\)

A  B = \(\begin{bmatrix}i&0\\\ 0&i\end{bmatrix}-\begin{bmatrix}0&-i\\\ -i&0\end{bmatrix}\) = \(\begin{bmatrix}i&i\\\ i&i\end{bmatrix}\)

∴ (A + B) (A – B) = \(\begin{bmatrix}i&-i\\\ -i&i\end{bmatrix}\begin{bmatrix}i&i\\\ i&i\end{bmatrix}\) = \(\begin{bmatrix}i^2-i^2&i^2-i^2\\\ -i^2+i^2&-i^2+i^2\end{bmatrix}\) = \(\begin{bmatrix}0&0\\\ 0&0\end{bmatrix}\)

Now, A2\(\begin{bmatrix}i&0\\\ 0&i\end{bmatrix}\begin{bmatrix}i&0\\\ 0&i\end{bmatrix}\) = \(\begin{bmatrix}i^2&0\\\ 0&i^2\end{bmatrix}\) = \(\begin{bmatrix}-1&0\\\ 0&-1\end{bmatrix}\)

B2 = \(\begin{bmatrix}0&-i\\\ -i&0\end{bmatrix}\begin{bmatrix}0&-i\\\ -i&0\end{bmatrix}\) = \(\begin{bmatrix}i^2&0\\\ 0&i^2\end{bmatrix}\) = \(\begin{bmatrix}-1&0\\\ 0&-1\end{bmatrix}\)

⇒ A2 - B2 = \(\begin{bmatrix}-1&0\\\ 0&-1\end{bmatrix}-\begin{bmatrix}-1&0\\\ 0&-1\end{bmatrix}\) = \(\begin{bmatrix}0&0\\\ 0&0\end{bmatrix}\)

⇒ (A + B) (A – B) = A2 - B2 

∴ The value of (A + B) (A – B) is A2 - B2 

The correct answer is Option 1. 

Top Multiplication MCQ Objective Questions

If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\), then the value of A4 is

  1. \(\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)
  2. \(\left[ {\begin{array}{*{20}{c}} 1&1\\ 0&0 \end{array}} \right]\)
  3. \(\left[ {\begin{array}{*{20}{c}} 0&0\\ 1&1 \end{array}} \right]\)
  4. \(\left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 1 : \(\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

Multiplication Question 6 Detailed Solution

Download Solution PDF

Calculation:

Given: \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\)

\({{\rm{A}}^2} = {\rm{AA}} = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\)

\(\Rightarrow {{\rm{A}}^2} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {0 + 1}&{0 + 0}\\ {0 + 0}&{1 + 0} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

Now,

\(\Rightarrow {{\rm{A}}^4} = {{\rm{A}}^2}{{\rm{A}}^2} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

Hence Option 1st is correct answer.

If \(\rm \begin{bmatrix} \rm 2x & 3 \end{bmatrix}\begin{bmatrix} \ \ 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} \rm x \\ 8 \end{bmatrix}=0\), then the value of x is

  1. \(\dfrac{23}{2}\)
  2. \(\dfrac{13}{2}\)
  3. \(-\dfrac{13}{2}\)
  4. \(-\dfrac{23}{2}\)

Answer (Detailed Solution Below)

Option 4 : \(-\dfrac{23}{2}\)

Multiplication Question 7 Detailed Solution

Download Solution PDF

Concept:

Matrix Multiplication:

Multiplication is only possible when the number of columns of the first matrix is equal to the number of rows of the second matrix.

A m×n matrix multiplied by a n×p matrix results in a m×p matrix.

Matrices are multiplied by multiplying each element of a row of the first m×n matrix with the corresponding elements of all the columns of the second n×p matrix to obtain the first row of the product matrix with p columns, and so on for all the m rows of the first matrix.

Calculation:

\(\rm \begin{bmatrix} \rm 2x & 3 \end{bmatrix}\begin{bmatrix} \ \ 1 & 2 \\ -3 & 0 \end{bmatrix}\) = [2x - 9   4x + 0]

= [2x - 9   4x]

∴ \(\rm \begin{bmatrix} \rm 2x & 3 \end{bmatrix}\begin{bmatrix} \ \ 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} \rm x \\ 8 \end{bmatrix}=0\)

\(\rm \Rightarrow \begin{bmatrix}\rm 2x-9 & \rm 4x\end{bmatrix}\begin{bmatrix}\rm x \\ 8\end{bmatrix}\) = 0

⇒ [(2x - 9)x + 8×4x] = 0

⇒ [2x2 - 9x + 32x] = 0

⇒ 2x2 + 23x = 0

⇒ x(2x + 23) = 0

⇒ x = 0 or \(\rm -\dfrac{23}{2}\).

If A and B are two matrices such that AB = B and BA = A, then A2 + B2 is equal to

  1. 2AB
  2. 2BA
  3. A + B
  4. AB

Answer (Detailed Solution Below)

Option 3 : A + B

Multiplication Question 8 Detailed Solution

Download Solution PDF

Concept:

The associative property of matrix is given by:

X (YZ) = (XY) Z      ----(1)

Given:

AB = B and BA = A      ----(2)

Calculation:

A2 + B2

⇒ AA + BB

⇒ A (BA) + B (AB)      [using (2)]

⇒ (AB) A + (BA) B      [using (1)]

⇒ BA + AB

⇒ A + B

Hence, A2 + B2 = A + B.

If \(A = \left[ {\begin{array}{*{20}{c}} 2&{ - \;2}\\ { - \;3}&4 \end{array}} \right]\) then find the value of (-A2 + 6 A) ?

  1. \(\left[ {\begin{array}{*{20}{c}} - 2&0\\ 0&- 2 \end{array}} \right]\)
  2. \(\left[ {\begin{array}{*{20}{c}} 2&0\\ 0&2 \end{array}} \right]\)
  3. \(\left[ {\begin{array}{*{20}{c}} - 2&0\\ 0&2 \end{array}} \right]\)
  4. \(\left[ {\begin{array}{*{20}{c}} 2&0\\ 0&- 2 \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 2 : \(\left[ {\begin{array}{*{20}{c}} 2&0\\ 0&2 \end{array}} \right]\)

Multiplication Question 9 Detailed Solution

Download Solution PDF

Concept:

Scalar Multiplication:

If any matrix is multiplied by a scalar k ∈ R, then each element of the matrix is multiplied by k i.e If A = [aij]m × n then k × A = A = [k × aij]m × n

Multiplication of Matrices:

If A and B are two matrices such that the no. of columns of A is equal to the no. of rows of B. If A = [aij] is a m × n matrix and B = [bij] be a n × p matrix, then the product AB is the resultant matrix of order m × p and is defined as:

\({\left( {AB} \right)_{ij}} = \;\mathop \sum \limits_{k = 1}^n {a_{ik}} \times {b_{kj}}\forall \;i = 1,\;2, \ldots ,m\;and\;j = 1,\;2,\; \ldots .,\;p\)

Calculation:

Given: \(A = \left[ {\begin{array}{*{20}{c}} 2&{ - \;2}\\ { - \;3}&4 \end{array}} \right]\)

Here, we have to find the value of the expression: (\(\rm -\) A2 + 6 A)

\(\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}} {10}&{ - \;12}\\ { - \;18}&{22} \end{array}} \right]\) and \(6 \cdot A = \left[ {\begin{array}{*{20}{c}} {12}&{ - \;12}\\ { - \;18}&{24} \end{array}} \right]\)

\(\Rightarrow - \;{A^2} + 6 \cdot A = \left[ {\begin{array}{*{20}{c}} { - \;10}&{12}\\ {18}&{ - \;22} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {12}&{ - \;12}\\ { - \;18}&{24} \end{array}} \right]\)

\(\Rightarrow \left[ {\begin{array}{*{20}{c}} 2&0\\ 0&2 \end{array}} \right]\)

Hence, \(\rm (- A^2 + 6 \cdot A)= \left[ {\begin{array}{*{20}{c}} 2&0\\ 0&2 \end{array}} \right]\)

What is \(\left[ {{\rm{x\;\;y\;\;z}}} \right]\left[ {\begin{array}{*{20}{c}} {\rm{a}}&{\rm{h}}&{\rm{g}}\\ {\rm{h}}&{\rm{b}}&{\rm{f}}\\ {\rm{g}}&{\rm{f}}&{\rm{c}} \end{array}} \right]\) equal to?

  1. [ax + hy + gz    h + b + f    g + f + c]
  2. \(\left[ {\begin{array}{*{20}{c}} {\rm{a}}&{\rm{h}}&{\rm{g}}\\ {{\rm{hx}}}&{{\rm{by}}}&{{\rm{fz}}}\\ {\rm{g}}&{\rm{f}}&{\rm{c}} \end{array}} \right]\)
  3. \(\left[ {\begin{array}{*{20}{c}} {{\rm{ax}} + {\rm{hy}} + {\rm{gz}}}\\ {{\rm{hx}} + {\rm{by}} + {\rm{fz}}}\\ {{\rm{gx}} + {\rm{fy}} + {\rm{cs}}} \end{array}} \right]\)
  4. [ax + hy + gz    hx + by + fz    gx + fy + cz]

Answer (Detailed Solution Below)

Option 4 : [ax + hy + gz    hx + by + fz    gx + fy + cz]

Multiplication Question 10 Detailed Solution

Download Solution PDF

Calculation:

We have to find the value of \(\left[ {{\rm{x\;\;y\;\;z}}} \right]\left[ {\begin{array}{*{20}{c}} {\rm{a}}&{\rm{h}}&{\rm{g}}\\ {\rm{h}}&{\rm{b}}&{\rm{f}}\\ {\rm{g}}&{\rm{f}}&{\rm{c}} \end{array}} \right]\)

\( \Rightarrow \left[ {{\rm{x\;\;y\;\;z}}} \right]\left[ {\begin{array}{*{20}{c}} {\rm{a}}&{\rm{h}}&{\rm{g}}\\ {\rm{h}}&{\rm{b}}&{\rm{f}}\\ {\rm{g}}&{\rm{f}}&{\rm{c}} \end{array}} \right]\)

= [ax + hy + gz    hx + by + fz    gx + fy + cz]

\({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {{\rm{x}} + {\rm{y}}}&{\rm{y}}\\ {\rm{x}}&{{\rm{x}} - {\rm{y}}} \end{array}} \right],{\rm{\;B}} = \left[ {\begin{array}{*{20}{c}} 3\\ { - 2} \end{array}} \right]\) and \({\rm{C}} = \left[ {\begin{array}{*{20}{c}} 4\\ { - 2} \end{array}} \right]\)

If AB = C, then what is A2 equal to?

  1. \(\left[ {\begin{array}{*{20}{c}} 4&8\\ { - 4}&{ - 16} \end{array}} \right]\)
  2. \(\left[ {\begin{array}{*{20}{c}} 4&{ - 4}\\ 8&{ - 16} \end{array}} \right]\)
  3. \(\left[ {\begin{array}{*{20}{c}} { - 4}&{ - 8}\\ 4&{12} \end{array}} \right]\)
  4. \(\left[ {\begin{array}{*{20}{c}} { - 4}&{ - 8}\\ 8&{12} \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 4 : \(\left[ {\begin{array}{*{20}{c}} { - 4}&{ - 8}\\ 8&{12} \end{array}} \right]\)

Multiplication Question 11 Detailed Solution

Download Solution PDF

Concept:

Multiplication of matrices:

  • The number of columns of the 1st matrix must equal the number of rows of the 2nd matrix.
  • The result will have the same number of rows as the 1st matrix, and the same number of columns as the 2nd matrix.
  • To multiply an m × n matrix by an n × p matrix, the n must be the same, and the result is an m × p matrix.

 

Calculation:

Given: AB = C

\( \Rightarrow \left[ {\begin{array}{*{20}{c}} {{\rm{x}} + {\rm{y}}}&{\rm{y}}\\ {\rm{x}}&{{\rm{x}} - {\rm{y}}} \end{array}} \right] \times \left[ {\begin{array}{*{20}{c}} 3\\ { - 2} \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 4\\ { - 2} \end{array}} \right]\)

\( \Rightarrow \left[ {\begin{array}{*{20}{c}} {3{\rm{x}} + 3{\rm{y}} - 2{\rm{y}}}\\ {3{\rm{x}} - 2{\rm{x}} + 2{\rm{y}}} \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 4\\ { - 2} \end{array}} \right]\)

\( \Rightarrow \left[ {\begin{array}{*{20}{c}} {3{\rm{x}} + {\rm{y}}}\\ {{\rm{x}} + 2{\rm{y}}} \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 4\\ { - 2} \end{array}} \right]\)

So, 3x + y = 4   …. (1)

x + 2y = -2       …. (2)

Solving equation 1 and 2, we get

x = 2 and y = -2

Now,

\({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {{\rm{x}} + {\rm{y}}}&{\rm{y}}\\ {\rm{x}}&{{\rm{x}} - {\rm{y}}} \end{array}} \right] \)

\(= {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {2 - 2}&{ - 2}\\ 2&{2 - \left( { - 2} \right)} \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 0&{ - 2}\\ 2&4 \end{array}} \right]\)

\({{\rm{A}}^2} = {\rm{A}} \times {\rm{A}} \)

\(= {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 0&{ - 2}\\ 2&4 \end{array}} \right] \times \left[ {\begin{array}{*{20}{c}} 0&{ - 2}\\ 2&4 \end{array}} \right]\)

\( \Rightarrow {{\rm{A}}^2} = \left[ {\begin{array}{*{20}{c}} { - 4}&{ - 8}\\ 8&{12} \end{array}} \right]\)

If \(\rm A = \left[ {\begin{array}{*{20}{c}} 1&\rm a\\ 0&1 \end{array}} \right]\), then An =

  1. \(\left[ {\begin{array}{*{20}{c}} 1&\rm na\\ 0&1 \end{array}} \right]\)
  2. \(\left[ {\begin{array}{*{20}{c}} n&n\\ 0&n \end{array}} \right]\)
  3. \(\left[ {\begin{array}{*{20}{c}} n&1\\ 0&n \end{array}} \right]\)
  4. \(\left[ {\begin{array}{*{20}{c}} 1&1\\ 0&n \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 1 : \(\left[ {\begin{array}{*{20}{c}} 1&\rm na\\ 0&1 \end{array}} \right]\)

Multiplication Question 12 Detailed Solution

Download Solution PDF

Calculation:

Given: 

\(\rm A = \left[ {\begin{array}{*{20}{c}} 1&\rm a\\ 0&1 \end{array}} \right]\)

\(\rm {A^2} = A.A = \left[ {\begin{array}{*{20}{c}} 1&\rm a\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1& \rm a\\ 0&1 \end{array}} \right]\)

=\( \left[ {\begin{array}{*{20}{c}} {1 + 0}&{\rm a + a}\\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&2\rm a\\ 0&1 \end{array}} \right]\)

\(\rm{A^3} = {A^2}.A = \left[ {\begin{array}{*{20}{c}} 1&2\rm a\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&\rm a\\ 0&1 \end{array}} \right]\)

=\( \left[ {\begin{array}{*{20}{c}} 1&{\rm 2a + 1a}\\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&3\rm a\\ 0&1 \end{array}} \right]\)

Seeing the pattern here

\(\rm {A^n} = \left[ {\begin{array}{*{20}{c}} 1& \rm na\\ 0&1 \end{array}} \right]\)

Let \(\rm A = \left[ {\begin{array}{*{20}{c}} {\rm{a}}&{\rm{h}}&{\rm{g}}\\ {\rm{h}}&{\rm{b}}&{\rm{f}}\\ {\rm{g}}&{\rm{f}}&{\rm{c}} \end{array}} \right]\) and \({\rm{B}} = \left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right],\) then what is AB equal to?

  1. \(\left[ {\begin{array}{*{20}{c}} {{\rm{ax}} + {\rm{hy}} + {\rm{gz}}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right]\)
  2. \(\left[ {\begin{array}{*{20}{c}} {{\rm{ax}} + {\rm{hy}} + {\rm{gz}}}\\ {{\rm{hx}} + {\rm{by}} + {\rm{fz}}}\\ {\rm{z}} \end{array}} \right]\)
  3. \(\left[ {\begin{array}{*{20}{c}} {{\rm{ax}} + {\rm{hy}} + {\rm{gz}}}\\ {{\rm{hx}} + {\rm{by}} + {\rm{fz}}}\\ {{\rm{gx}} + {\rm{fy}} + {\rm{cz}}} \end{array}} \right]\)
  4. \(\left[ {\begin{array}{*{20}{c}} {{\rm{ax}} + {\rm{hy}} + {\rm{gz}}}&{{\rm{hx}} + {\rm{by}} + {\rm{fz}}}&{{\rm{gx}} + {\rm{fy}} + {\rm{cz}}} \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 3 : \(\left[ {\begin{array}{*{20}{c}} {{\rm{ax}} + {\rm{hy}} + {\rm{gz}}}\\ {{\rm{hx}} + {\rm{by}} + {\rm{fz}}}\\ {{\rm{gx}} + {\rm{fy}} + {\rm{cz}}} \end{array}} \right]\)

Multiplication Question 13 Detailed Solution

Download Solution PDF

Concept:

The product of two matrices is only possible when the inner dimensions are the same, meaning that the number of columns of the first matrix is equal to the number of rows of the second matrix.

 

Calculations:

Given \(A = \left[ {\begin{array}{*{20}{c}} {\rm{a}}&{\rm{h}}&{\rm{g}}\\ {\rm{h}}&{\rm{b}}&{\rm{f}}\\ {\rm{g}}&{\rm{f}}&{\rm{c}} \end{array}} \right]_{3\times 3}\) and \({\rm{B}} = \left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right]_{3\times1}\)

The product of two matrices is only possible when the inner dimensions are the same, meaning that the number of columns of the first matrix is equal to the number of rows of the second matrix.

i.e AB is posible and its order is \(\rm 3\times 1\)

Now, To obtain the entry in row 1, column 1 of \displaystyle AB,\text{} multiply the first row in \displaystyle A by the first column in \displaystyle B, and add.

To obtain the entry in row 2, column 1 of \displaystyle AB,\text{} multiply the second row in \displaystyle A by the first column in \displaystyle B, and add.

To obtain the entry in row 3, column 1 of \displaystyle AB,\text{} multiply the third row in \displaystyle A by the first column in \displaystyle B, and add.

\(AB = \left[ {\begin{array}{*{20}{c}} {\rm{a}}&{\rm{h}}&{\rm{g}}\\ {\rm{h}}&{\rm{b}}&{\rm{f}}\\ {\rm{g}}&{\rm{f}}&{\rm{c}} \end{array}} \right]_{3\times 3}​​\left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right]_{3\times1}\)

 

\(AB = \left[ {\begin{array}{*{20}{c}} {{\rm{ax}} + {\rm{hy}} + {\rm{gz}}}\\ {{\rm{hx}} + {\rm{by}} + {\rm{fz}}}\\ {{\rm{gx}} + {\rm{fy}} + {\rm{cz}}} \end{array}} \right]_{3\times1}\)

Let A = \(\begin{bmatrix}1 &\ \ \ 2\\1&-1\end{bmatrix}\) and B = \(\begin{bmatrix}\ \ \ \rm a &\rm b\\-1&1\end{bmatrix}\). If (A + B)2 = A2 + B2, then the values of a and b are:

  1. a = 1, b = -4
  2. a = -1, b = 4.
  3. a = -2, b = -1
  4. a = 2, b = 1.

Answer (Detailed Solution Below)

Option 2 : a = -1, b = 4.

Multiplication Question 14 Detailed Solution

Download Solution PDF

Concept:

Matrix Multiplication:

  • Multiplication is only possible when the number of columns of the first matrix is equal to the number of rows of the second matrix.
  • A m × n matrix multiplied by a n × p matrix results in a m × p matrix.
  • Matrices are multiplied by multiplying each element of a row of the first m × n matrix with the corresponding elements of all the columns of the second n × p matrix to obtain the first row of the product matrix with p columns, and so on for all the m rows of the first matrix.
  • For two matrices A and B, AB ≠ BA.


Calculation:

For two matrices A and B, we have:

(A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2,

Since it is given that (A + B)2 = A2 + B2, we must have:

AB + BA = 0

⇒ \(\begin{bmatrix}1 &\ \ \ 2\\1&-1\end{bmatrix}\times\begin{bmatrix}\ \ \ \rm a &\rm b\\-1&1\end{bmatrix}+\begin{bmatrix}\ \ \ \rm a &\rm b\\-1&1\end{bmatrix}\times \begin{bmatrix}1 &\ \ \ 2\\1&-1\end{bmatrix}=\begin{bmatrix}0 &0\\0&0\end{bmatrix}\)

⇒ \(\begin{bmatrix}\rm a-2 &\rm b+2\\\rm a +1&\rm b-1\end{bmatrix}+\begin{bmatrix}\rm a+b &\rm 2a-b\\-1+1&-2-1\end{bmatrix}=\begin{bmatrix}0 &0\\0&0\end{bmatrix}\)

⇒ \(\begin{bmatrix}\rm 2a+b-2 &\rm 2a+2\\\rm a +1&\rm b-4\end{bmatrix}=\begin{bmatrix}0 &0\\0&0\end{bmatrix}\)

Comparing the elements of equal matrices, we get:

a + 1 = 0 and b - 4 = 0.

a = -1 and b = 4.

If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {\cos {\rm{\theta }}}&{\sin {\rm{\theta }}}\\ { - \sin {\rm{\theta }}}&{\cos {\rm{\theta }}} \end{array}} \right]\), then what is A3 equal to?

  1. \(\left[ {\begin{array}{*{20}{c}} {\cos 3{\rm{\theta }}}&{\sin 3{\rm{\theta }}}\\ { - \sin 3{\rm{\theta }}}&{\cos 3{\rm{\theta }}} \end{array}} \right]\)
  2. \(\left[ {\begin{array}{*{20}{c}} {{{\cos }^3}{\rm{\theta \;}}}&{{{\sin }^3}{\rm{\theta }}}\\ { - {{\sin }^3}{\rm{\theta }}}&{{{\cos }^3}{\rm{\theta }}} \end{array}} \right]\)
  3. \(\left[ {\begin{array}{*{20}{c}} {\cos 3{\rm{\theta }}}&{ - \sin 3{\rm{\theta }}}\\ {\sin 3{\rm{\theta }}}&{\cos 3{\rm{\theta }}} \end{array}} \right]\)
  4. \(\left[ {\begin{array}{*{20}{c}} {{{\cos }^3}{\rm{\theta }}}&{ - {{\sin }^3}{\rm{\theta }}}\\ {{{\sin }^3}{\rm{\theta }}}&{{{\cos }^3}{\rm{\theta }}} \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 1 : \(\left[ {\begin{array}{*{20}{c}} {\cos 3{\rm{\theta }}}&{\sin 3{\rm{\theta }}}\\ { - \sin 3{\rm{\theta }}}&{\cos 3{\rm{\theta }}} \end{array}} \right]\)

Multiplication Question 15 Detailed Solution

Download Solution PDF

Concept:

  • cos2 θ – sin2 θ = cos 2θ
  • 2 sin θ cos θ = sin 2θ
  • cos (x + y) = cos x cos y – sin x sin y
  • sin (x + y) = sin x cos y + cos x sin y


Calculation:

Given:

\({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {\cos {\rm{\theta }}}&{\sin {\rm{\theta }}}\\ { - \sin {\rm{\theta }}}&{\cos {\rm{\theta }}} \end{array}} \right]\)

\({{\rm{A}}^2} = {\rm{AA}} = \left[ {\begin{array}{*{20}{c}} {\cos {\rm{\theta }}}&{\sin {\rm{\theta }}}\\ { - \sin {\rm{\theta }}}&{\cos {\rm{\theta }}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\cos {\rm{\theta }}}&{\sin {\rm{\theta }}}\\ { - \sin {\rm{\theta }}}&{\cos {\rm{\theta }}} \end{array}} \right]\)

\( \Rightarrow {{\rm{A}}^2} = \left[ {\begin{array}{*{20}{c}} {{{\cos }^2}{\rm{\theta }} - {\rm{\;}}{{\sin }^2}{\rm{\theta }}}&{\cos {\rm{\theta }}\sin {\rm{\theta }} + {\rm{\;}}\sin {\rm{\theta }}\cos {\rm{\theta }}}\\ { - \cos {\rm{\theta }}\sin {\rm{\theta }} - {\rm{\;}}\cos {\rm{\theta }}\sin {\rm{\theta }}}&{ - {{\sin }^2}{\rm{\theta }} + {\rm{\;}}{{\cos }^2}{\rm{\theta }}} \end{array}} \right]\)

\( \Rightarrow {{\rm{A}}^2} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\cos 2{\rm{\theta }}}&{\sin 2{\rm{\theta }}}\\ { - \sin 2{\rm{\theta }}}&{\cos 2{\rm{\theta }}} \end{array}} \right]\)

Now,

\(\Rightarrow {{\rm{A}}^3} = {{\rm{A}}^2}{\rm{A}} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\cos 2{\rm{\theta }}}&{\sin 2{\rm{\theta }}}\\ { - \sin 2{\rm{\theta }}}&{\cos 2{\rm{\theta }}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\cos {\rm{\theta }}}&{\sin {\rm{\theta }}}\\ { - \sin {\rm{\theta }}}&{\cos {\rm{\theta }}} \end{array}} \right]\)

\(\Rightarrow {{\rm{A}}^3} = \left[ {\begin{array}{*{20}{c}} {\cos 2{\rm{\theta }}\cos {\rm{\theta }} - \sin 2{\rm{\theta }}\sin {\rm{\theta \;}}}&{\cos 2{\rm{\theta }}\sin {\rm{\theta }} + \sin 2{\rm{\theta }}\cos {\rm{\theta }}}\\ { - \sin 2{\rm{\theta }}\cos {\rm{\theta }} - {\rm{\;}}\cos 2{\rm{\theta }}\sin {\rm{\theta }}}&{ - \sin 2{\rm{\theta }}\sin {\rm{\theta }} + \cos 2{\rm{\theta }}\cos {\rm{\theta }}} \end{array}} \right]{\rm{\;}}\)

\(\Rightarrow {{\rm{A}}^3} = \left[ {\begin{array}{*{20}{c}} {\cos 2{\rm{\theta }}\cos {\rm{\theta }} - \sin 2{\rm{\theta }}\sin {\rm{\theta \;}}}&{\cos 2{\rm{\theta }}\sin {\rm{\theta }} + \sin 2{\rm{\theta }}\cos {\rm{\theta }}}\\ { - \left( {\cos 2{\rm{\theta }}\sin {\rm{\theta }} + \sin 2{\rm{\theta }}\cos {\rm{\theta }}} \right)}&{\cos 2{\rm{\theta }}\cos {\rm{\theta }} - \sin 2{\rm{\theta }}\sin {\rm{\theta }}} \end{array}} \right]\)

\(\Rightarrow {{\rm{A}}^3} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\cos (2{\rm{\theta }} + {\rm{\theta }}){\rm{\;}}}&{\sin (2{\rm{\theta }} + {\rm{\theta }}){\rm{\;}}}\\ { - \sin (2{\rm{\theta }} + {\rm{\theta }})}&{\cos (2{\rm{\theta }} + {\rm{\theta }}){\rm{\;}}} \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\cos 3{\rm{\theta }}}&{\sin 3{\rm{\theta }}}\\ { - \sin 3{\rm{\theta }}}&{\cos 3{\rm{\theta }}} \end{array}} \right]{\rm{\;}}\)

∴ Option 1st is correct answer.

Get Free Access Now
Hot Links: teen patti master update teen patti neta teen patti real cash apk teen patti classic