Integration using Substitution MCQ Quiz - Objective Question with Answer for Integration using Substitution - Download Free PDF

Last updated on Apr 8, 2025

Latest Integration using Substitution MCQ Objective Questions

Integration using Substitution Question 1:

The integral  is equal to

(Where c in constant of integration) 

  1. log (sin x) + c
  2. -tan-1(cos x) + c
  3. log (tan x) + c

Answer (Detailed Solution Below)

Option 3 :

Integration using Substitution Question 1 Detailed Solution

Explanation:

   = 

  = 

  = 

Let tan x = t2 ⇒ sec2x dx = 2tdt

So, I = 

        = 2t + c

      = 

Option (3) is true.

Integration using Substitution Question 2:

Evaluate the following:  

  1. cos(xex) + c
  2. tan(xex​) + c
  3. sec(xex​) tan(xex) + c
  4. -cot(xex​) + c
  5. xex

Answer (Detailed Solution Below)

Option 2 : tan(xex​) + c

Integration using Substitution Question 2 Detailed Solution

Concept Used:

d(u × v) = u × dv + v × du

Calculation:

Let xex = t 

Differential with respect to t

(xex + ex) dx = dt 

e(x + 1) dx = dt 

Now, ∫(1/cos2t) dt

⇒ ∫sec2t dt 

⇒ tant + c

∴​  = tan(xex) + c

Integration using Substitution Question 3:

Evaluate 

  1. cos-1 (tan x) + c
  2. sin-1 (tan x) + c
  3. sec-1 (tan x) + c
  4. -sec-1 (tan x) + c
  5. -sec-1 cos-1 (tan x)

Answer (Detailed Solution Below)

Option 2 : sin-1 (tan x) + c

Integration using Substitution Question 3 Detailed Solution

Formula Used:

cos2x = cos2x - sin2x

tanx = sinx/cosx

 = sin-1x + c

Calculation:

Let,

I = 

⇒ I =  

⇒ I = 

⇒ I = 

Let tanx = t 

Differential with respect to t

⇒ I = (sec2x) dx = dt

⇒ I = 

⇒ sin-1t + c

∴ sin-1(tanx) + c

Integration using Substitution Question 4:

  equals

  1. tan x + sec x + c
  2. tan x - sec x + c
  3. secx - cosec2 x + c
  4. sec x - sec x tan x + c
  5. tan x

Answer (Detailed Solution Below)

Option 2 : tan x - sec x + c

Integration using Substitution Question 4 Detailed Solution

Solution

⇒ 

Dividing and multiplying the term by its conjugate.

  × dx

⇒   ...(1 - sin2x = cos2x)

⇒  =  

Since, (1/cos2x = sec2x and sin/cos2x = tan x × sec x) 

∫(sec2x - tan x sec x) dx

∫sec2x dx - ∫tan x sec x dx

⇒ tan x - sec x + c

The correct option is 2.

Integration using Substitution Question 5:

 dx equals :

  1. cosec−1(sin x + cos x) + C
  2. cosec−1(sin x − cos x) + C
  3. sin−1(sin x − cos x) + C
  4. sin−1() + C

Answer (Detailed Solution Below)

Option 3 : sin−1(sin x − cos x) + C

Integration using Substitution Question 5 Detailed Solution

Formula Used:

2 sin x cos x =sin 2x

Calculation:

Let  . . .(1)

Now, Put sin x - cos x = t

⇒​ ( sin x + cos x ) dx = dt

and (sin x - cos x)2 = t2

⇒ 1 - 2 sin x cos x =  t2

⇒ 1 - sin 2x =  t2

⇒ 1 - t =  sin 2x

Substituting all the values in (1)

Top Integration using Substitution MCQ Objective Questions

 is equal to ?

  1.   + c
  2.   + c
  3.   + c
  4.   + c

Answer (Detailed Solution Below)

Option 2 :   + c

Integration using Substitution Question 6 Detailed Solution

Download Solution PDF

Concept:

Calculation:

I = 

Let 5x = t

Differentiating with respect to x, we get

⇒ 5dx = dt

⇒ dx = 

Now,

I = 

 + c

 + c

Answer (Detailed Solution Below)

Option 3 :

Integration using Substitution Question 7 Detailed Solution

Download Solution PDF

Concept:

 

Calculation:

I = 

Let 2x + 3 = t2

Differenating with respect to x, we get

⇒ 2dx = 2tdt

⇒ dx = tdt

Now,

I = 

∵ 2x + 3 = t2

⇒  (2x + 3)1/2 = t

⇒ (2x + 3)3/2 = t3

⇒ I = 

Answer (Detailed Solution Below)

Option 2 :

Integration using Substitution Question 8 Detailed Solution

Download Solution PDF

Concept:

Calculation:

I = 

Let 5x = t

Differentiating with respect to x, we get

⇒ 5dx = dt

⇒ dx = 

Now,

I = 

What is the integral of f(x) = 1 + x2 + x4 with respect to x2?

Answer (Detailed Solution Below)

Option 4 :

Integration using Substitution Question 9 Detailed Solution

Download Solution PDF

Concept: 

 =       ....(i)

Calculation:

Let, x2 = u

From equation (i)

 = 

⇒ u +  + + C

Now putting the value of u,

​⇒  = x2 +​  +  + C

∴ The required integral is x2 +​  +  + C.

Answer (Detailed Solution Below)

Option 3 :

Integration using Substitution Question 10 Detailed Solution

Download Solution PDF

Concept:

Calculation:

I = 

Let 4x - 3 = t2

Differenating with respect to x, we get

⇒ 4dx = 2tdt

⇒ dx = dt

Now,

I = 

Answer (Detailed Solution Below)

Option 2 :

Integration using Substitution Question 11 Detailed Solution

Download Solution PDF

Concept:

Integral property:

  • ∫ xn dx = + C ; n ≠ -1
  •  + C

 

 

Calculation:

Let I = 

I = 

Let 1 + x2 = t

⇒ 2x dx = dt

I = 

              [∵ n log m = log mn]

If and  then

  1. I1 - I2 = 0
  2. I2 = 2I1
  3. I1 = 2I2
  4. I1 + I2 = 0

Answer (Detailed Solution Below)

Option 1 : I1 - I2 = 0

Integration using Substitution Question 12 Detailed Solution

Download Solution PDF

Calculation:

Given: and 

⇒  put log x = z

Such that x = ez

Such that dx = ez dz 

when x = e, z = loge

x = e2, z = log e2 = 2 log e = z 

Such that I1 = (ez dz) / z =(ex/z) dx = I2

Such that I1 = I2

I1 - I2 = 0 

Find the 

  1. log (sin x) + c
  2. log (cos x) + c
  3.  log (tan x) + c
  4.  log [log(tan x)] + c

Answer (Detailed Solution Below)

Option 4 :  log [log(tan x)] + c

Integration using Substitution Question 13 Detailed Solution

Download Solution PDF

Concept:

sin 2x = 2sin x cos x

∫(1/x)dx = log x + c

∫tanx dx = sec2x + c  

Calculation:

Let I =          ....(1)

Take log (tan x) = t

⇒ 

⇒ 

⇒ dx = sin x.cos x dt

Putting the value of log (tan x) and dx in equation (i)

Now, I = 

= ∫ dt

= log t + c

= log [log(tan x) ]+ c

Answer (Detailed Solution Below)

Option 4 :

Integration using Substitution Question 14 Detailed Solution

Download Solution PDF

Concept:

 

Calculation:

Let, I = 

                (∵ )

Now, let ex = t

⇒ ex dx = dt

∴ I = 

             (∵ )

         (∵ ex = t)

Hence, option (4) is correct. 

Answer (Detailed Solution Below)

Option 2 :

Integration using Substitution Question 15 Detailed Solution

Download Solution PDF

Concept:

 

Calculation:

I = ∫ cot 2x dx

Let sin 2x = t

Differentiating with respect to x, we get

⇒ 2 cos 2x dx = dt

⇒ cos 2x dx = 

Hot Links: teen patti master 51 bonus teen patti gold old version teen patti joy mod apk teen patti list teen patti real cash withdrawal