Hyperbola MCQ Quiz - Objective Question with Answer for Hyperbola - Download Free PDF

Last updated on Mar 29, 2025

Latest Hyperbola MCQ Objective Questions

Hyperbola Question 1:

The equation of the hyperbola, whose eccentricity is \(\sqrt{2}\) and whose foci are 16 units apart, is

  1. 9x− 4y= 36
  2. 2x− 3y2 = 7
  3. x− y2 = 16
  4. x2 − y2 = 32
  5. 2x− 3y2 = 9

Answer (Detailed Solution Below)

Option 4 : x2 − y2 = 32

Hyperbola Question 1 Detailed Solution

Concept:

If the equation of a hyperbola is, then the coordinates of foci will be (ae,0) and (-ae,0), where e is the eccentricity

and b2 = a2(e2 - 1)

Calculation:

Let the equation of hyperbola be \({x^2 \over a^2}-{y^2 \over b^2} =1\)

then the coordinates of foci will be (ae,0) and (-ae,0), where e is the eccentricity

Distance between foci = 2ae = 16

⇒ 2a(\(\sqrt{2}\)) = 16

⇒ a = 4\(\sqrt{2}\)

and b2 = a2(e2 - 1) = 32(2 - 1) = 32

⇒ b = 4\(\sqrt{2}\)

So the equation of the hyperbola is x2 − y2 = 32

∴ The correct option is (4).

Hyperbola Question 2:

The equation of a tangent to the hyperbola 4x2 - 5y2 = 20 parallel to the line x - y = 2 is

  1. x - y + 9 = 0
  2. x - y + 7 = 0
  3. x - y + 1 = 0
  4. x - y - 3 = 0
  5. x - y - 7 = 0

Answer (Detailed Solution Below)

Option 3 : x - y + 1 = 0

Hyperbola Question 2 Detailed Solution

Concept:

The equation of the tangent to the hyperbola \({x^2\over a^2 }-{y^2 \over b^2} = 1\) is

\(y = mx ± \sqrt {a^2m^2 -b^2}\) where m is the slope of tangent.

Calculation:

Given hyperbola 4x2 - 5y2 = 20 

⇒ \({x^2\over 5 }-{y^2 \over 4} = 1\) ⇒ a = \(\sqrt{5}\) and b = 2

Since, the tangent is parallel to x - y = 2

⇒ The slope of tangent = m = 1

So The equation of tangent is

  y = x ± \(\sqrt{5 -4}\)

⇒ y = x ± 1

∴ The correct answer is option (3).

Hyperbola Question 3:

If A and B are the points of intersection of the circle x2 + y2 – 8x = 0 and the hyperbola \(\frac{x^{2}}{9}-\frac{y^{2}}{4}=1\) and a point P moves on the line 2x – 3y + 4 = 0, then the centroid of ΔPAB lies on the line : 

  1. 4x – 9y = 12
  2. x + 9y = 36
  3. 9x – 9y = 32
  4. 6x – 9y = 20

Answer (Detailed Solution Below)

Option 4 : 6x – 9y = 20

Hyperbola Question 3 Detailed Solution

Calculation

\(x^{2}+y^{2}-8 x=0, ...(1)\)

\(\frac{x^{2}}{9}-\frac{y^{2}}{4}=1\)

4x2 – 9y2 = 36 ... (2)

Solve (1) & (2)

4x2 – 9 (8x – x2) = 36

13x2 –72x –36 = 0

(13x + 6) (x = 6) = 0

\(x=\frac{-6}{13}, x=6\)

\(x=\frac{-6}{13}(\text { rejected })\)

y → Imaginary 

\(\frac{36}{9}-\frac{\mathrm{y}^{2}}{4}=1\)

\(\mathrm{y}^{2}=12, \mathrm{y}=\pm \sqrt{12}\)

\(\mathrm{A}(6, \sqrt{12}), \mathrm{B}(6,-\sqrt{12})\)

\(\mathrm{p}\left(\alpha, \frac{2 \alpha+4}{3}\right)\) as P lies on 2x – 3y + y = 0

Centroid (h, k)

\(\mathrm{h}=\frac{12+\alpha}{3}⇒ \alpha=3 \mathrm{~h}-12\)

\(\mathrm{k}=\frac{\frac{2 \alpha+4}{3}}{3} \Rightarrow 2 \alpha+4=9 \mathrm{k}\)

⇒ \(\alpha=\frac{9 \mathrm{k}-4}{2}\)

6h – 2y = 9k – 4

6x – 9y = 20 

Hence option 4 is correct

Hyperbola Question 4:

Let \(\mathrm{H}_{1}: \frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1\) and \(\mathrm{H}_{2}:-\frac{\mathrm{x}^{2}}{\mathrm{~A}^{2}}+\frac{y^{2}}{\mathrm{~B}^{2}}=1\) be two hyperbolas having length of latus rectums \(15 \sqrt{2}\) and \(12 \sqrt{5}\) respectively. Let their eccentricities be \(e_{1}=\sqrt{\frac{5}{2}}\) and e2 respectively. If the product of the lengths of their transverse axes is \(100 \sqrt{10}\), then \(25 \mathrm{e}_{2}^{2}\) is equal to ______ 

Answer (Detailed Solution Below) 55

Hyperbola Question 4 Detailed Solution

Calculation

Given

\(\mathrm{H}_{1}: \frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1\) and \(\mathrm{H}_{2}:-\frac{\mathrm{x}^{2}}{\mathrm{~A}^{2}}+\frac{y^{2}}{\mathrm{~B}^{2}}=1\)  

Latus rectum of H\(15 \sqrt{2}\)

⇒ \(\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=15 √{2}\) ...(1)

\(e_{1}=\sqrt{\frac{5}{2}}\)

⇒ \(1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{5}{2}\) ...(2)

From (1) and (2)

a = 5√2 

b = 53

Latus rectum of H\(12 \sqrt{5}\) 

⇒ \(\frac{2 \mathrm{~A}^{2}}{\mathrm{~B}}=12 √{5}\)

Product of the lengths of their transverse axes is \(100 \sqrt{10}\)

⇒ \(2 \mathrm{a} \cdot 2 \mathrm{~B}=100 √{10}\)

⇒ \(2.5 √{2} .2 \mathrm{~B}=100 √{10}\)

⇒ B = 5√5

⇒ A = 56

\(\mathrm{e}_{2}^{2}=1+\frac{\mathrm{A}^{2}}{\mathrm{~B}^{2}}\)

 \(1+\frac{150}{125}\)

⇒ \(\mathrm{e}_{2}^{2}=1+\frac{30}{25}\)

\(25 \mathrm{e}_{2}^{2}=55\)

Hyperbola Question 5:

Let the foci of a hyperbola be (1, 14) and (1, –12). If it passes through the point (1, 6), then the length of its latus-rectum is :

  1. \(\frac{25}{6}\)
  2. \(\frac{24}{5}\)
  3. \(\frac{288}{5}\)
  4. \(\frac{144}{5}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{288}{5}\)

Hyperbola Question 5 Detailed Solution

Calculation

 

qImage67a855fcf5f95e0b74bdba30

be = 13, b = 5

a2 = b2 (e2 – 1)

= b2 e2 – b2

= 169 – 25 = 144

\(\ell(\mathrm{LR})=\frac{2 \mathrm{a}^{2}}{\mathrm{~b}}=\frac{2 \times 144}{5}=\frac{288}{5}\)

Hence option 3 is correct

Top Hyperbola MCQ Objective Questions

The length of latus rectum of the hyperbola \(\rm \frac{x^2}{100} - \frac{y^2}{75} = 1\) is

  1. 10
  2. 12
  3. 14
  4. 15

Answer (Detailed Solution Below)

Option 4 : 15

Hyperbola Question 6 Detailed Solution

Download Solution PDF

Concept:

Hyperbola: The locus of a point which moves such that its distance from a fixed point is greater than its distance from a fixed straight line. (Eccentricity = e > 1)

Equation

\(\frac{{\;{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} - \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

\(- \frac{{\;{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} + \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

Equation of Transverse axis

y = 0

x = 0

Equation of Conjugate axis

x = 0

y = 0

Length of Transverse axis

2a

2b

Length of Conjugate axis

2b

2a

Vertices

(± a, 0)

(0, ± b)

Focus

(± ae, 0)

(0, ± be)

Directrix

x = ± a/e

y = ± b/e

Centre

(0, 0)

(0, 0)

Eccentricity

\(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}}\)

\(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{a}}^2}}}{{{{\rm{b}}^2}}}}\)

Length of Latus rectum

\(\frac{{2{{\rm{b}}^2}}}{{\rm{a}}}\)

\(\frac{{2{{\rm{a}}^2}}}{{\rm{b}}}\)

Focal distance of the point (x, y)

ex ± a

ey ± a

 

  • Length of Latus rectum = \(\rm \frac{2b^2}{a}\)

 

Calculation:

Given: \(\rm \frac{x^2}{100} - \frac{y^2}{75} = 1\)

Compare with the standard equation of a hyperbola: \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} - \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

So, a2 = 100 and b2 = 75

∴ a = 10

Length of latus rectum =  \(\rm \frac{2b^2}{a}\)\(\rm \frac{2 \times 75}{10} = 15\)

Find the equation of the hyperbola, the length of whose latus rectum is 4 and the eccentricity is 3 ?

  1. 2x2 - y2 = 1
  2. 16x2 - 2y2 = 1
  3. 6x2 - 2y2 = 1
  4. None of these

Answer (Detailed Solution Below)

Option 2 : 16x2 - 2y2 = 1

Hyperbola Question 7 Detailed Solution

Download Solution PDF

CONCEPT:

The properties of a rectangular hyperbola \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) are:

  • Its centre is given by: (0, 0)
  • Its foci are given by: (- ae, 0) and (ae, 0)
  • Its vertices are given by: (- a, 0)  and (a, 0)
  • Its eccentricity is given by: \(e = \frac{{\sqrt {{a^2} + {b^2}} }}{a}\)
  • Length of transverse axis = 2a and its equation is y = 0.
  • Length of conjugate axis = 2b and its equation is x = 0.
  • Length of its latus rectum is given by: \(\frac{2b^2}{a}\)

 

CALCULATION:

Here, we have to find the equation of hyperbola whose length of latus rectum is 4 and the eccentricity is 3.

As we know that, length of latus rectum of a hyperbola is given by \(\frac{2b^2}{a}\)

⇒ \(\frac{2b^2}{a} = 4\)

⇒ b2 = 2a

As we know that, the eccentricity of a hyperbola is given by \(e = \frac{{\sqrt {{a^2} + {b^2}} }}{a}\)

⇒ a2e2 = a2 + b2

⇒ 9a2 = a2 + 2a

⇒ a = 1/4

∵ b2 = 2a

⇒ b2 = 1/2

So, the equation of the required hyperbola is 16x2 - 2y2 = 1

Hence, option B is the correct answer.

The distance between the foci of a hyperbola is 16 and its eccentricity is √2. Its equation is

  1. x2 - y2 = 32
  2. \(\rm \dfrac{x^2}{4}-\dfrac{y^2}{9}=1\)
  3. 2x2 - 3y2 = 7
  4. y2 + x2 = 32

Answer (Detailed Solution Below)

Option 1 : x2 - y2 = 32

Hyperbola Question 8 Detailed Solution

Download Solution PDF

Concept

The equation of the hyperbola is \(\rm \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1\) 

The distance between the foci of a hyperbola = 2ae 

Again, \(\rm b^2 = a^2(e^2-1)\)

 

Calculations:

The equation of the hyperbola is \(\rm \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1\) ....(1)

The distance between the foci of a hyperbola is 16 and its eccentricity e = √2.

We know that The distance between the foci of a hyperbola = 2ae 

⇒ 2ae = 16 

⇒ a  =  \(\dfrac {16}{2\sqrt 2}\) = \({4\sqrt 2}\)

Again, \(\rm b^2 = a^2(e^2-1)\)

⇒ \(\rm b^2 = 32(2-1)\)

⇒ \(\rm b^2 = 32\)

Equation (1) becomes

⇒ \(\rm \dfrac{x^2}{32} - \dfrac{y^2}{32} = 1 \)

⇒ x2 - y2 = 32

The eccentricity of the hyperbola 16x2 – 9y2 = 1 is

  1. \(\frac{3}{5}\)
  2. \(\frac{5}{3}\)
  3. \(\frac{4}{5}\)
  4. \(\frac{5}{4}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{5}{3}\)

Hyperbola Question 9 Detailed Solution

Download Solution PDF

Concept:

Hyperbola: The locus of a point which moves such that its distance from a fixed point is greater than its distance from a fixed straight line. (Eccentricity = e > 1)

Equation

\(\frac{{\;{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} - \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

\(- \frac{{\;{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} + \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

Equation of Transverse axis

y = 0

x = 0

Equation of Conjugate axis

x = 0

y = 0

Length of Transverse axis

2a

2b

Length of Conjugate axis

2b

2a

Vertices

(± a, 0)

(0, ± b)

Focus

(± ae, 0)

(0, ± be)

Directrix

x = ± a/e

y = ± b/e

Centre

(0, 0)

(0, 0)

Eccentricity

\(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}}\)

\(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{a}}^2}}}{{{{\rm{b}}^2}}}}\)

Length of Latus rectum

\(\frac{{2{{\rm{b}}^2}}}{{\rm{a}}}\)

\(\frac{{2{{\rm{a}}^2}}}{{\rm{b}}}\)

Focal distance of the point (x, y)

ex ± a

ey ± a

 

Calculation:

Given:

16x2 – 9y2 = 1

\( \Rightarrow \frac{{{\rm{\;}}{{\rm{x}}^2}}}{{\frac{1}{{16}}}} - \frac{{{{\rm{y}}^2}}}{{\frac{1}{9}}} = 1\)

Compare with \(\frac{{{\rm{\;}}{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} - \frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}} = 1\)

∴ a2 = 1/16 and b2 = 1/9

Eccentricity = \(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} = \;\sqrt {1 + \;\frac{{\left( {\frac{1}{9}} \right)}}{{\left( {\frac{1}{{16}}} \right)}}} = \;\sqrt {1 + \;\frac{{16}}{9}} = \;\sqrt {\frac{{25}}{9}} = \;\frac{5}{3}\) 

Find the equation directrix of hyperbola , 3y2 - 2x2 = 12 .

  1. x = \(\pm \sqrt{\frac{2}{5}}\)
  2. y = \(\pm \sqrt{\frac{3}{5}}\)
  3. x = \(\pm\frac{2}{\sqrt{10}}\)
  4. y = \(\pm\frac{4}{\sqrt{10}}\)

Answer (Detailed Solution Below)

Option 4 : y = \(\pm\frac{4}{\sqrt{10}}\)

Hyperbola Question 10 Detailed Solution

Download Solution PDF

Concept: 

Equation of hyperbola , \(\rm \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}= 1\) 

Eccentricity, e = \(\rm\sqrt{1+\frac{b^{2}}{a^{2}}}\)  

Directrix, x  = \(\rm\pm \frac{a}{e}\) 

 

Equation of hyperbola , \(\rm- \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}= 1\)  

Eccentricity, e = \(\rm\sqrt{1+\frac{a^{2}}{b^{2}}}\) 

Directrix, y = \(\rm\pm \frac{b}{e}\)  

 

Calculation: 

Given hyperbolic equation are ,  3y2 - 2x2 = 12 

⇒ \(\rm- \frac{x^{2}}{6}+\frac{y^{2}}{4}= 1\) 

On comparing with standard equation, a = \(\sqrt{6}\) and  b = 2 .

We know that eccentricity, e = \(\rm\sqrt{1+\frac{a^{2}}{b^{2}}}\) 

⇒ e = \(\rm\sqrt{1+\frac{6}{4}}\) 

⇒ e = \(\frac{\sqrt{10}}{2}\)        

As we know that Directrix , y = \(\rm\pm \frac{b}{e}\) 

∴ Directrix, y = \(\pm\frac{2}{\frac{\sqrt{10}}{2}}\) 

Directrix, y = \(\pm\frac{4}{\sqrt{10}}\) . 

The correct option is 4 . 

The coordinates of foci of the hyperbola \(\rm \frac{x^2}{16} - \frac{y^2}{9} = 1\) is

  1. (± 5, 0)
  2. (± 4, 0)
  3. (± 3, 0)
  4. None of these

Answer (Detailed Solution Below)

Option 1 : (± 5, 0)

Hyperbola Question 11 Detailed Solution

Download Solution PDF

Concept:

Standard equation of an hyperbola: \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} - \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\) (a > b)

  • Coordinates of foci = (± ae, 0)
  • Eccentricity (e) = \(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} \) ⇔ a2e2 = a2 + b2
  • Length of Latus rectum = \(\rm \frac{2b^2}{a}\)

 

Calculation:

Given: \(\rm \frac{x^2}{16} - \frac{y^2}{9} = 1\)

Compare with the standard equation of a hyperbola: \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} - \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

So, a2 = 16 and b2 = 9

⇒ a = 4 and b = 3   (a > b)

Now, Eccentricity (e) = \(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} \) 

\(\sqrt {1 + \frac{9}{16}}\)

\(\sqrt { \frac{16+9}{16}}\)

\(\frac 54\)

Coordinates of foci = (± ae, 0) 

= (± 5, 0)

For a hyperbola \(\frac{{{{\rm{x}}^2}}}{{16}} - \frac{{{{\rm{y}}^2}}}{9} = 1\) then equation of directrix is

  1. x = 4/5
  2. x = -4/5
  3. x = ± 16/5
  4. x = 17/5

Answer (Detailed Solution Below)

Option 3 : x = ± 16/5

Hyperbola Question 12 Detailed Solution

Download Solution PDF

Concept:

For the standard equation of a hyperbola, \(\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} - \frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}} = 1\)

Coordinates of foci = (± ae, 0)

Coordinates of vertices = (±a, 0)

Eccentricity, e = \(\sqrt {1 + \frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} \)

Equation of directrix, x = ± a/e

Calculation:

Given:

\(\frac{{{{\rm{x}}^2}}}{{16}} - \frac{{{{\rm{y}}^2}}}{9} = 1\)

Compare with standard equation, we get

a2 = 16 and b2 = 9

Eccentricity e = \(\sqrt {1 + \frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} = \sqrt {1 + \frac{9}{{16}}} = \sqrt {\frac{{16 + 9}}{{16}}} = \sqrt {\frac{{25}}{{16}}} = \frac{5}{4}\)

Now, Equation of directrix,

\(x = \pm \frac{a}{e} = \pm \frac{4}{{\left( {\frac{5}{4}} \right)}} = \pm \frac{{16}}{5}\)

Find the eccentricity of the conic 25x2 - 4y2 = 100.

  1. 5
  2. \(\frac{5}{2}\)
  3. \(\frac{\sqrt{29}}{2}\)
  4. \(\frac{\sqrt{21}}{2}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{\sqrt{29}}{2}\)

Hyperbola Question 13 Detailed Solution

Download Solution PDF

Concept:

The general equation of the hyperbola is:

\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)

Here, coordinates of foci are (±ae, 0).

And eccentricity = \(e=\sqrt{1+\frac{b^2}{a^2}}\)

Calculation:

The equation 25x2 - 4y2 = 100 can be written as

\(\frac{x^{2}}{4}-\frac{y^{2}}{25}=1\)

This is the equation of a hyperbola.

On comparing it with the general equation of hyperbola, we get

⇒ a2 = 4 and b2 = 25

Now, the eccentricity is given by

\(e=\sqrt{1+\frac{25}{4}} = \frac{\sqrt{29}}{2}\)

Hence, the eccentricity is \(\frac{\sqrt{29}}{2}\).

If the eccentricity of a hyperbola is √2, then the general equation of the hyperbola will be:

  1. 2x2 - y2 = a2
  2. x2 - y2 = a2
  3. x2 - 2y2 = a2
  4. 2x2 - 8y2 = a2

Answer (Detailed Solution Below)

Option 2 : x2 - y2 = a2

Hyperbola Question 14 Detailed Solution

Download Solution PDF

Concept:

The eccentricity 'e' of the hyperbola \(\rm \frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) is given by e = \(\rm \sqrt{1+\frac{b^2}{a^2}}\), for a > b.

Calculation:

Let's say that the equation of the hyperbola is \(\rm \frac{x^2}{a^2}-\frac{y^2}{b^2}=1\).

Eccentricity is √2.

⇒ √2 = \(\rm \sqrt{1+\frac{b^2}{a^2}}\)

Squaring both sides, we get

⇒ 2 = \(\rm 1+\frac{b^2}{a^2}\)

⇒ \(\rm \frac{b^2}{a^2}\) = 1

⇒ a2 = b2

The required equation is therefore, \(\rm \frac{x^2}{a^2}-\frac{y^2}{a^2}=1\) or x2 - y2 = a2.

The equation of the hyperbola, whose centre is at the origin (0, 0), foci (±3, 0) and eccentricity \(e = \frac{3}{2}\)

  1. \(\frac{{{x^2}}}{8} - \frac{{{y^2}}}{6} = 1\)
  2. \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{5} = 1\)
  3. \(\frac{{{x^2}}}{5} - \frac{{{y^2}}}{4} = 1\)
  4. None of the above

Answer (Detailed Solution Below)

Option 2 : \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{5} = 1\)

Hyperbola Question 15 Detailed Solution

Download Solution PDF

Concept:

For the standard equation of a hyperbola,\(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

Coordinates of foci (± ae, 0)

Eccentricity \(e = \sqrt {1 + \frac{{{b^2}}}{{{a^2}}}} \)

Calculation:

Here, foci = (±3, 0) and eccentricity, \(e = \frac{3}{2}\)

∴ ae = 3 and \(e = \frac{3}{2} \Rightarrow a = 2\)

\(\therefore {b^2} = {a^2}\left( {{e^2} - 1} \right) \Rightarrow {b^2} = 4\left( {\frac{9}{4} -1} \right) = 4 \times \frac{5}{4} = 5\)

So, the equation of the required hyperbola is

\(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{5} = 1\)

Get Free Access Now
Hot Links: teen patti gold apk download teen patti master king dhani teen patti teen patti master apk best teen patti master golden india