Inequalities in one Variable MCQ Quiz in বাংলা - Objective Question with Answer for Inequalities in one Variable - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Mar 13, 2025

পাওয়া Inequalities in one Variable उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Inequalities in one Variable MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Inequalities in one Variable MCQ Objective Questions

Top Inequalities in one Variable MCQ Objective Questions

Inequalities in one Variable Question 1:

Find the solution of the inequality:

\(\frac{x}{4}< \frac{(5x-2)}{3}-\frac{(7x-3)}{5}\)

  1. \((4,\infty )\)
  2. \([4,\infty )\)
  3. (2, 4)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : \((4,\infty )\)

Inequalities in one Variable Question 1 Detailed Solution

Concept:

Rules for Operations on Inequalities:

  • Adding the same number to each side of an inequality does not change the direction of the inequality symbol.
  • Subtracting the same number from each side of an inequality does not change the direction of the inequality symbol.
  • Multiplying each side of an inequality by a positive number does not change the direction of the inequality symbol.
  • Multiplying each side of an inequality by a negative number reverses the direction of the inequality symbol.
  • Dividing each side of an inequality by a positive number does not change the direction of the inequality symbol.
  • Dividing each side of an inequality by a negative number reverses the direction of the inequality symbol.

Calculation:

Given:

Let us rewrite the given inequality, we get

\(\frac{x}{4}< \frac{(5x-2)}{3}-\frac{(7x-3)}{5}\)

\(\Rightarrow \frac{x}{4}< \frac{5(5x-2)-3(7x-3)}{15}\)

\(\Rightarrow \frac{x}{4}< \frac{25x-10-21x+9}{15}\)

\(\Rightarrow \frac{x}{4}< \frac{4x-1}{15}\)

⇒ 15x < 4(4x - 1)

⇒ 15x < 16x - 4

⇒ 15x - 16x < 16x - 16x - 4

⇒ -x < -4

⇒ x > 4

Therefore, we can say that the solution set for the given inequality is \((4,\infty )\).

Inequalities in one Variable Question 2:

The solution set of the inequality 17 - (2x + 4) ≤ 9x - 4(2x - 3) is

  1. \(\left[\frac{-1}{3},\infty\right)\)
  2. \(\left(-\infty,\frac{1}{3}\right]\)
  3. \(\left[\frac{1}{3},\infty\right)\)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : \(\left[\frac{1}{3},\infty\right)\)

Inequalities in one Variable Question 2 Detailed Solution

Calculation:

We have, 17 - (2x + 4) ≤ 9x - 4(2x - 3)

⇒ 17 - 2x - 4 ≤ 9x - 8x + 12

⇒ 17 - 4 - 12 ≤ 9x - 8x + 2x

⇒ 1 ≤ 3x

⇒ x ≥ \(\frac{1}{3}\)

∴ The solution set is x ∈  \(\left[\frac{1}{3},\infty\right)\) .

Inequalities in one Variable Question 3:

The solution set of the inequality 37 − (3x + 5) ≥ 9x − 8(x − 3) is

  1. (−∞, 2)
  2. (−∞, −2) 
  3. (−∞, 2]
  4. (−∞, −2] 

Answer (Detailed Solution Below)

Option 3 : (−∞, 2]

Inequalities in one Variable Question 3 Detailed Solution

Calculation

Given;

Inequality: 37 - (3x + 5) ≥ 9x - 8(x - 3)

⇒ 37 - 3x - 5 ≥ 9x - 8x + 24

⇒ 32 - 3x ≥ x + 24

⇒ 32 - 24 ≥ x + 3x

⇒ 8 ≥ 4x

⇒ 4x ≤ 8

⇒ x ≤ 2

∴ The solution set is (-∞, 2].

Hence option 3 is correct.

Inequalities in one Variable Question 4:

If x satisfies the inequality \(-3<\frac{1}{2}+\frac{-3 x}{2} \leq 6\), then x lies in the interval

  1. \(\left[\frac{-11}{3}, \frac{7}{3}\right)\)
  2. \(\left(\frac{-11}{3}, \frac{7}{3}\right]\)
  3. \(\left(\frac{7}{3}, \frac{11}{3}\right]\)
  4. \(\left[\frac{-10}{3}, \frac{7}{3}\right)\)
  5. \(\left[\frac{7}{3}, \frac{10}{3}\right)\)

Answer (Detailed Solution Below)

Option 1 : \(\left[\frac{-11}{3}, \frac{7}{3}\right)\)

Inequalities in one Variable Question 4 Detailed Solution

Calculation

Given:

\(-3 < \frac{1}{2} + \frac{-3x}{2} \leq 6\)

⇒ \(-6 < 1 - 3x \leq 12\)

⇒ \(-7 < -3x \leq 11\)

⇒ \(\frac{-7}{-3} > x \geq \frac{11}{-3}\)

⇒  \(\frac{7}{3} > x \geq -\frac{11}{3}\)

⇒ \(-\frac{11}{3} \leq x < \frac{7}{3}\)

∴ x lies in the interval \(\left[-\frac{11}{3}, \frac{7}{3}\right)\)

Hence option 1 is correct

Inequalities in one Variable Question 5:

The solution set of the inequality 17 - (2x + 4) ≤ 9x - 4(2x - 3) is

  1. \(\left[\frac{-1}{3},\infty\right)\)
  2. \(\left(-\infty,\frac{1}{3}\right]\)
  3. \(\left[\frac{1}{3},\infty\right)\)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : \(\left[\frac{1}{3},\infty\right)\)

Inequalities in one Variable Question 5 Detailed Solution

Calculation:

We have, 17 - (2x + 4) ≤ 9x - 4(2x - 3)

⇒ 17 - 2x - 4 ≤ 9x - 8x + 12

⇒ 17 - 4 - 12 ≤ 9x - 8x + 2x

⇒ 1 ≤ 3x

⇒ x ≥ \(\frac{1}{3}\)

∴ The solution set is x ∈  \(\left[\frac{1}{3},\infty\right)\) .

Inequalities in one Variable Question 6:

If |3x - 5| ≤ 2 then

  1. \(\rm -1 \le x \le \dfrac{7}{3}\)
  2. \(\rm 1 \le x \le \dfrac{7}{3}\)
  3. \(\rm 1 \le x \le \dfrac{9}{3}\)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : \(\rm 1 \le x \le \dfrac{7}{3}\)

Inequalities in one Variable Question 6 Detailed Solution

Concept:

If |x| ≤ a then - a ≤ x ≤ a

 

Calculations:

Given , |3x - 5| ≤ 2 

⇒ - 2 ≤ 3x - 5 ≤ 2

⇒ - 2 + 5 ≤ 3x  ≤ 2 + 5 

⇒ 3 ≤ 3x  ≤ 7

\(\rm 1 \le x \le \dfrac{7}{3}\) 

Hence, if |3x - 5| ≤ 2 then then \(\rm 1 \le x \le \dfrac{7}{3}\)

Inequalities in one Variable Question 7:

The solution set of the inequality 17 - (2x + 4) ≤ 9x - 4(2x - 3) is

  1. \(\left[\frac{-1}{3},\infty\right)\)
  2. \(\left(-\infty,\frac{1}{3}\right]\)
  3. \(\left[\frac{1}{3},\infty\right)\)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : \(\left[\frac{1}{3},\infty\right)\)

Inequalities in one Variable Question 7 Detailed Solution

Calculation:

We have, 17 - (2x + 4) ≤ 9x - 4(2x - 3)

⇒ 17 - 2x - 4 ≤ 9x - 8x + 12

⇒ 17 - 4 - 12 ≤ 9x - 8x + 2x

⇒ 1 ≤ 3x

⇒ x ≥ \(\frac{1}{3}\)

∴ The solution set is x ∈  \(\left[\frac{1}{3},\infty\right)\) .

Inequalities in one Variable Question 8:

On the number line, the solution of system of inequalities \(\left\{ \begin{matrix} 5+x > 3x - 7 \\\ 11 - 5x \le 1 \end{matrix} \right.\) is represented

  1. F1 Vinanti Teaching 09.01.23 D2
  2. F1 Vinanti Teaching 09.01.23 D3
  3. F1 Vinanti Teaching 09.01.23 D4
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : F1 Vinanti Teaching 09.01.23 D3

Inequalities in one Variable Question 8 Detailed Solution

Explanation:

Given system of linear inequality is 

\(\left\{ \begin{matrix} 5 + x > 3x - 7 \\\ 11 - 5x \le 1 \end{matrix} \right.\)

When 5 + x > 3x - 7 ⇒ 2x < 12 ⇒ x < 6

When 11 - 5x ≤ 1 ⇒ 5x ≥ 10 ⇒ x ≥ 2

On the number line, the solution is represented as below.

F1 Vinanti Teaching 09.01.23 D3

Inequalities in one Variable Question 9:

If |3x - 5| ≤ 2 then

  1. \(\rm -1 \le x \le \dfrac{7}{3}\)
  2. \(\rm 1 \le x \le \dfrac{7}{3}\)
  3. \(\rm 1 \le x \le \dfrac{9}{3}\)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : \(\rm 1 \le x \le \dfrac{7}{3}\)

Inequalities in one Variable Question 9 Detailed Solution

Concept:

If |x| ≤ a then - a ≤ x ≤ a

 

Calculations:

Given , |3x - 5| ≤ 2 

⇒ - 2 ≤ 3x - 5 ≤ 2

⇒ - 2 + 5 ≤ 3x  ≤ 2 + 5 

⇒ 3 ≤ 3x  ≤ 7

\(\rm 1 \le x \le \dfrac{7}{3}\) 

Hence, if |3x - 5| ≤ 2 then then \(\rm 1 \le x \le \dfrac{7}{3}\)

Inequalities in one Variable Question 10:

The range of 'k' for which ||x - 2| - \(\frac{k}{2}\)| = 3, has real solution is

  1. \([6, \infty)\)
  2. \([-6, \infty)\)
  3. \((-\infty,6]\)
  4. \((-\infty,-6]\)

Answer (Detailed Solution Below)

Option 2 : \([-6, \infty)\)

Inequalities in one Variable Question 10 Detailed Solution

Concept:

Modulus function: It gives the absolute value of a variable (x). It is denoted by |x|

  • \(|x|=\left\{\begin{matrix} x, x≥0\\ -x, x<0 \end{matrix}\right. \)
  • |x| ≥ 0 for x ∈ R

For any real number a:

  • |x| ≤ a  - a ≤ x ≤ a
  • |x| ≥ a  - x ≤ -a or x ≥ a

Calculation:

We have, ||x - 2| - \(\frac{k}{2}\)| = 3

⇒ |x - 2| - \(\frac{k}{2}\) = ±3

⇒ |x - 2| = 3 + \(\frac{k}{2}\) or -3 + \(\frac{k}{2}\)

Now, for real values of x,

3 + \(\frac{k}{2}\) ≥ 0 or -3 + \(\frac{k}{2}\) ≥ 0

⇒ k ≥ - 6 or k ≥ 6

∴ k ∈ \([-6, \infty)\) or k ∈ \([6, \infty)\)

Since \([6, \infty)\) is included in the interval \([-6, \infty)\).

∴ k ∈ \([-6, \infty)\).

The correct answer is Option 2.

Get Free Access Now
Hot Links: teen patti live teen patti yes teen patti stars