Area MCQ Quiz in বাংলা - Objective Question with Answer for Area - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Mar 16, 2025

পাওয়া Area उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Area MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Area MCQ Objective Questions

Top Area MCQ Objective Questions

Area Question 1:

What is the area of the triangle whose vertices are (3, 0), (0, 4) and (3, 4) ?

  1. 6 square unit
  2. 7.5 square unit
  3. 9 square unit
  4. 12 square unit

Answer (Detailed Solution Below)

Option 1 : 6 square unit

Area Question 1 Detailed Solution

Concept:

Area of the triangle:

Area of the triangle with vertices \(\left(x_1, y_1\right), \left(x_2, y_2\right)\mbox{ and }\left(x_3, y_3\right)\) is given by:

\(|A| = \begin{vmatrix} x_1 & y_1 & 1\\ x_2 & y_2 & 1\\ x_3 & y_3 & 1\\ \end{vmatrix}\)

 

Calculation:

It is given that the triangle has vertices as \((3, 0), (0,4)\mbox{ and }(3, 4)\).

Thus, area of the triangle is given by:

\(\begin{align*} A &= \dfrac{1}{2}\begin{vmatrix} 3 & 0 & 1\\ 0 & 4 & 1\\ 3 & 4 & 1 \end{vmatrix}\\ &= \dfrac{1}{2}\left(3(4 - 4) -0(0 -3) + 1(0 - 12)\right)\\ &= -6 \end{align*}\)

Thus the area of the triangle is 6 square units.

Area Question 2:

The area of a triangle is 5 and two of its vertices are A(2, 1), B(3, -2). Then, the third vertex, in 1st quadrant which lies on the line y = x + 3 is

  1. \(\left(\frac{7}{2}, \frac{13}{2}\right)\)
  2. \(\left(\frac{5}{2}, \frac{5}{2}\right)\)
  3. \(\left(\frac{3}{2}, \frac{3}{2}\right)\)
  4. (0, 0)

Answer (Detailed Solution Below)

Option 1 : \(\left(\frac{7}{2}, \frac{13}{2}\right)\)

Area Question 2 Detailed Solution

Concept:

The area of a triangle with vertices (x1, y1), (x2, y2), (x3, y3) is \({1 \over 2} [x_1(y_2 - y_3) +x_2 (y_3 -y_1) + x_3 (y_1 -y_2)]\)

Calculation:

The third vertex lies on the line y = x + 3

Let the third vertex be (k, k + 3)

⇒ The area of a triangle with vertices (2, 1), (3, -2), (k, k + 3) is

\({1 \over 2} [2(-2 - (k+3)) +3 (k+3 -1) + k (1 -(-2))]\)

⇒ \({1 \over 2} [2(-5 - k) +3 (k+2 ) + k (3))] = 5\)

⇒ \([-10 - 2k +3 k+6 + 3k] = 5\times 2\)

⇒ \([-4 +4 k] = 10\)

⇒ k = 14/4 = 7/2

⇒ The third vertex = (k, k + 3) = \(\left(\frac{7}{2}, \frac{13}{2}\right)\)

∴ The correct answer is option (1).

Area Question 3:

Find the area of the triangle whose vertices are A (1, 1), B (- 1, - 1) and C (- √3, √3) ?

  1. 0
  2. 3√3
  3. 2√3
  4. √3

Answer (Detailed Solution Below)

Option 3 : 2√3

Area Question 3 Detailed Solution

CONCEPT:

Let A (x1, y1), B (x2, y2) and C (x3, y3) be the vertices of a Δ ABC, then area of Δ ABC = \(\frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1\\ {{x_2}}&{{y_2}}&1\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|\)

CALCULATION:

Given: A (1, 1), B (- 1, - 1) and C (- √3, √3) are the vertices of the triangle ABC

Let x1 = 1, y1 = 1, x2 = - 1, y2 = - 1, x3 = - √3 and y3 = √3

As we know that, if A (x1, y1), B (x2, y2) and C (x3, y3) are the  vertices of a Δ ABC then area of Δ ABC = \(\frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1\\ {{x_2}}&{{y_2}}&1\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|\)

\(⇒ A = \frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{1}}&{{1}}&1\\ {{-1}}&{{- 1}}&1\\ {{-√3}}&{{√3}}&1 \end{array}} \right|\)

⇒ (1/2) |1 (-1 - √3) - 1 (-1 + √3) + 1 (- √3 - √3) |

⇒ (1/2) | (-1 - √3 + 1 - √3 - √3 - √3) |

⇒ (1/2) |-4 √3 | 

⇒ A = 2√3

Hence, option C is the correct answer.

Area Question 4:

Find the area of the triangle whose vertices are A (4, 4), B(3, - 16) and C(3, - 2) ?

  1. 16
  2. 7
  3. 13
  4. None of these

Answer (Detailed Solution Below)

Option 2 : 7

Area Question 4 Detailed Solution

CONCEPT:

Let A (x1, y1), B (x2, y2) and C (x3, y3) be the vertices of a Δ ABC, then area of Δ ABC = \(\frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1\\ {{x_2}}&{{y_2}}&1\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|\)

CALCULATION:

Given: A (4,4), B(3,- 16) and C(3,-2) are the vertices of the triangle ABC

Let x1 = 4, y1 = 4, x2 = 3, y2 = - 16, x3 = 3 and y3 = - 2

As we know that, if A (x1, y1), B (x2, y2) and C (x3, y3) are the  vertices of a Δ ABC then area of Δ ABC = \(\frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1\\ {{x_2}}&{{y_2}}&1\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|\)

\(⇒ A = \frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{4}}&{{4}}&1\\ {{3}}&{{-16}}&1\\ {{3}}&{{-2}}&1 \end{array}} \right|\)

⇒ A = 7 sq units

Hence, option B is the correct answer.

Area Question 5:

If the area of an equilateral triangle inscribed in the circle x2 + y2 + 10x + 12y + c = 0 is \(27\sqrt{3}\) sq. units, then c is equal to 

  1. 20
  2. 25
  3. 13
  4. -25

Answer (Detailed Solution Below)

Option 2 : 25

Area Question 5 Detailed Solution

Concept:

  • Area of an equilateral triangle = \(√3 a^2 \over 4\)

           where, a is the side of the triangle.

  • If equation of circle is x2 + y2 + 2gx + 2fy + c = 0, then radius of circle, R = \(√{g^2 + f^2 - c}\)
  • For an isosceles triangle, two sides equal to l and one a,

           a = 2l sin \(θ \over 2\), where θ is th angle opposite to a.

Calculation:

Area of the equilateral triangle given =  \(27√{3}\) sq. units

Let the side of the triangle be a,

⇒ \(√3 a^2 \over 4\)\(27√{3}\)

⇒ a2 = 27 × 4

⇒ a = 6√3 

Now the side 'a' and two radius joining centre of circle and vertices of triangle forms an isosceles triangle.

F3 Madhuri Defence 26.09.2022 D1

⇒ a = 2r sin \(120 \over 2\)

⇒ \(6√3 = 2r {√3 \over2}\)

⇒ r = 6

Now for given equation of circle, x2 + y2 + 10x + 12y + c = 0 

g = 5, f = 6, r = 6

⇒ r = \(\sqrt{g^2 + f^2 - c}\)

⇒ \(6=\sqrt{5^2 + 6^2 - c}\)

⇒ c = 25

∴ The correct answer is option (2).

Area Question 6:

What is the area bounded by the lines x = 0, y = 0 and x + y + 2 = 0?

  1. \(\frac 1 2\) square unit
  2. 1 square unit
  3. 2 square units
  4. 4 square units

Answer (Detailed Solution Below)

Option 3 : 2 square units

Area Question 6 Detailed Solution

Concept:

Area of Triangle = 1/2 × base × height

 

Calculation:

Here, x = 0, y = 0 and x + y + 2 = 0

So when x = 0, y = -2 and  

when y = 0, x = -2

so we get points, (0, -2) and (-2, 0)

 

F4 5f3572f5d936a10d07f712b7 Aman.K 20-08-2020 Savita Dia

 

Now, area of triangle  = 1/2 × 2 × 2

= 2 square units.

Hence, option (3) is correct.

Area Question 7:

Find the value of a for which the points (a, 2a), (3, 1) and (- 2, 6) are collinear ?

  1. 4/3
  2. 1/3
  3. 5/3
  4. None of these

Answer (Detailed Solution Below)

Option 1 : 4/3

Area Question 7 Detailed Solution

CONCEPT:

Let A (x1, y1), B (x2, y2) and C (x3, y3) be the vertices of a Δ ABC, then area of Δ ABC = \(\frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1\\ {{x_2}}&{{y_2}}&1\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|\)

Note: If the points A (x1, y1), B (x2, y2) and C (x3, y3) are collinear then area of ΔABC = 0.

CALCULATION

Here, we have to find the value of a for which the points (a, 2a), (3, 1) and (- 2, 6) are collinear

Let A = (a, 2a), B = (3, 1) and C = (- 2, 6)

Let x1 = a, y1 = 2a, x2 = 3, y2 = 1, x3 = - 2 and y3 = 6

As we know that, if A (x1, y1), B (x2, y2) and C (x3, y3) are the  vertices of a Δ ABC then area of Δ ABC = |A| where A = \(\frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1\\ {{x_2}}&{{y_2}}&1\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|\)

\(⇒ A = \frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{a}}&{{2a}}&1\\ {{3}}&{{1}}&1\\ {{-2}}&{{6}}&1 \end{array}} \right|\)

⇒ A = (20 - 15a)/2

∵ The given points are collinear.

As we know that, if the points A (x1, y1), B (x2, y2) and C (x3, y3) are collinear then area of ΔABC = 0.

⇒ A = (20 - 15a)/2 = 0

⇒ a = 4/3

Hence, option A is the correct answer.

Area Question 8:

Let a, b, c be the lengths of sides BC, CA, AB respectively of a triangle ABC. If p is the perimeter and q is the area of the triangle, then what is \(p(p-2a) \tan \left(\frac{A}{2}\right)\) equal to ?

  1. q
  2. 2q
  3. 3q
  4. 4q

Answer (Detailed Solution Below)

Option 4 : 4q

Area Question 8 Detailed Solution

Concept:

The perimeter of the triangle = sum of all sides

Area of triangle = (1/2)base × height

Calculation:

Since it is not mentioned, Δ ABC is which type of triangle. So, to make calculation easy

Let us assume, Δ ABC is a right-angle triangle where ∠A is 90°.

F1 Madhuri Defence 10.05.2022 D13

Let a = 5, b = 4, and c = 3 (Pythagorean triple)

Using the above concept, Perimeter

p = 3 + 4 + 5

⇒ p = 12  

Area of triangle

q = (1/2) 3 × 4

 q = 6

Hence, the required value

\(\Rightarrow p(p-2a) \tan \frac{A}{2}\) = 12(12 - 2 × 5)tan (90°/2) [∵ ∠A = 90°]

⇒ = 24        [∵ tan 45° = 1

From option 4

4q = 4 × 6 = 24

∴ 4q is the correct answer.

Alternate MethodConcept:

The perimeter of the triangle = sum of all sides = a + b + c

Area of scalene triangle = \(\sqrt{s(s-a)(s-b)(s-c)}\)

Half-angle formulae: \(\displaystyle tan(\frac{A}{2})=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \)

Where 2s = a + b + c and a, b, c are the sides of the triangle.

Calculation:

If p be the perimeter of the triangle,

p = a + b + c                ------(1)

q = \(\sqrt{s(s-a)(s-b)(s-c)}\)        ------(2)

where a, b, c are the sides of the triangle.

Now, 

\(\displaystyle p(p-2a) \tan \left(\frac{A}{2}\right)\) = (a + b+ c) (a + b+ c - 2a\(\displaystyle \tan \left(\frac{A}{2}\right) \)

⇒ (a + b+ c) (a + b+ c - 2a\(\displaystyle \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \)

Multiplying and dividing \(\sqrt{s(s - a)}\), we get, 

⇒ (a + b+ c) (a + b+ c - 2a) \(\displaystyle \sqrt{\frac{(s-b)(s-c)}{s(s-a)}×\frac{s(s-a)}{ s(s-a)}} \)

⇒  (a + b+ c) (a + b+ c - 2a) \(\displaystyle \sqrt{\frac{s(s-a)(s-b)(s-c)}{s^2(s-a)^2}} \)
⇒ (a + b+ c) (a + b+ c - 2a) \(\displaystyle \frac{\sqrt{s(s-a)(s-b)(s-c)}}{s(s-a)}\)     
From equation (1) & (2)
⇒ 2s (b + c - a) \(\displaystyle \frac{q}{s(s-a)}\)     [∵ b + c - a = 2(s - a)]    
⇒  2s × 2(s - a) \(\displaystyle \frac{q}{s(s-a)}\)
⇒  4q
∴  \(\displaystyle p(p-2a) \tan \left(\frac{A}{2}\right)\) = 4q

Area Question 9:

Find the value of k for which the points (7, - 2), (5, 1) and (3, k) are collinear ?

  1. - 3
  2. 3
  3. 4
  4. None of these

Answer (Detailed Solution Below)

Option 3 : 4

Area Question 9 Detailed Solution

CONCEPT:

Let A (x1, y1), B (x2, y2) and C (x3, y3) be the vertices of a Δ ABC, then area of Δ ABC= |A| where A = \(\frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1\\ {{x_2}}&{{y_2}}&1\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|\)

Note: If the points A (x1, y1), B (x2, y2) and C (x3, y3) are collinear then area of ΔABC = 0.

CALCULATION

Here, we have to find the value of k for  which the points (7, - 2), (5, 1) and (3, k) are collinear

Let A = (7, - 2), B = (5, 1) and C = (3, k)

Let x1 = 7, y1 = - 2, x2 = 5, y2 = 1, x3 = 3 and y3 = k.

As we know that, if A (x1, y1), B (x2, y2) and C (x3, y3) are the  vertices of a Δ ABC then area of Δ ABC = |A| where A = \(\frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1\\ {{x_2}}&{{y_2}}&1\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|\)

\(⇒ A = \frac{1}{2} \cdot \left| {\begin{array}{*{20}{c}} {{7}}&{{- 2}}&1\\ {{5}}&{{1}}&1\\ {{3}}&{{k}}&1 \end{array}} \right|\)

⇒ |A| = 4 - k

∵ The given points are collinear.

As we know that, if the points A (x1, y1), B (x2, y2) and C (x3, y3) are collinear then area of ΔABC = 0.

⇒ |A| = 4 - k = 0

⇒ k = 4

Hence, option C is the correct answer.

Area Question 10:

The sides of a triangular field are 41 m, 40 m and 9 m. The number of rose beds that can be prepared in the field if each rose bed, on an average, needs 900 square cm space is

  1. 2000
  2. 1800
  3. 900
  4. 800

Answer (Detailed Solution Below)

Option 1 : 2000

Area Question 10 Detailed Solution

Given:

The sides of a triangular field are 41 m, 40 m and 9 m.

Formula used:

Area of triangular field = √ s(s - a) (s - b) (s - c) 

S = a +b + c / 2 

Calculation:

S = 41 + 40 + 9 / 2 = 90 / 2 = 45m 

Area of triangular filed = √ 45(45 - 41) (45 - 9) (45 - 40)

⇒ 4 × 5 × 9 = 180m2 = 180 × 104 cm2

NOW 900 cm2 area required for 1 rose bed 

⇒ 180 × 104 cm2 area required for 180 × 104 / 900 rose 

∴  2000 rose bed 

Get Free Access Now
Hot Links: teen patti customer care number teen patti master golden india online teen patti real money