Exams
Test Series
Previous Year Papers
JEE Main Previous Year Question Paper JEE Advanced Previous Year Papers NEET Previous Year Question Paper CUET Previous Year Papers COMEDK UGET Previous Year Papers UP Polytechnic Previous Year Papers AP POLYCET Previous Year Papers TS POLYCET Previous Year Papers KEAM Previous Year Papers MHT CET Previous Year Papers WB JEE Previous Year Papers GUJCET Previous Year Papers ICAR AIEEA Previous Year Papers CUET PG Previous Year Papers JCECE Previous Year Papers Karnataka PGCET Previous Year Papers NEST Previous Year Papers KCET Previous Year Papers LPUNEST Previous Year Papers AMUEEE Previous Year Papers IISER IAT Previous Year Papers Bihar Diploma DECE-LE Previous Year Papers NPAT Previous Year Papers JMI Entrance Exam Previous Year Papers PGDBA Exam Previous Year Papers AP ECET Previous Year Papers PU CET Previous Year Papers GPAT Previous Year Papers CEED Previous Year Papers AIAPGET Previous Year Papers JKCET Previous Year Papers HPCET Previous Year Papers CG PAT Previous Year Papers SRMJEEE Previous Year Papers BCECE Previous Year Papers AGRICET Previous Year Papers TS PGECET Previous Year Papers MP PAT Previous Year Papers IIT JAM Previous Year Papers CMC Vellore Previous Year Papers ACET Previous Year Papers TS EAMCET Previous Year Papers NATA Previous Year Papers AIIMS MBBS Previous Year Papers BITSAT Previous Year Papers JEXPO Previous Year Papers HITSEEE Previous Year Papers AP EAPCET Previous Year Papers UCEED Previous Year Papers CG PET Previous Year Papers OUAT Previous Year Papers VITEEE Previous Year Papers
Syllabus
JEE Main Syllabus JEE Advanced Syllabus NEET Syllabus CUET Syllabus COMEDK UGET Syllabus UP Polytechnic JEECUP Syllabus AP POLYCET Syllabus TS POLYCET Syllabus KEAM Syllabus MHT CET Syllabus WB JEE Syllabus OJEE Syllabus ICAR AIEEA Syllabus CUET PG Syllabus NID Syllabus JCECE Syllabus Karnataka PGCET Syllabus NEST Syllabus KCET Syllabus UPESEAT EXAM Syllabus LPUNEST Syllabus PUBDET Syllabus AMUEEE Syllabus IISER IAT Syllabus NPAT Syllabus JIPMER Syllabus JMI Entrance Exam Syllabus AAU VET Syllabus PGDBA Exam Syllabus AP ECET Syllabus GCET Syllabus CEPT Syllabus PU CET Syllabus GPAT Syllabus CEED Syllabus AIAPGET Syllabus JKCET Syllabus HPCET Syllabus CG PAT Syllabus BCECE Syllabus AGRICET Syllabus TS PGECET Syllabus BEEE Syllabus MP PAT Syllabus MCAER PG CET Syllabus VITMEE Syllabus IIT JAM Syllabus CMC Vellore Syllabus AIMA UGAT Syllabus AIEED Syllabus ACET Syllabus TS EAMCET Syllabus PGIMER Exam Syllabus NATA Syllabus AFMC Syllabus AIIMS MBBS Syllabus BITSAT Syllabus BVP CET Syllabus JEXPO Syllabus HITSEEE Syllabus AP EAPCET Syllabus GITAM GAT Syllabus UPCATET Syllabus UCEED Syllabus CG PET Syllabus OUAT Syllabus IEMJEE Syllabus VITEEE Syllabus SEED Syllabus MU OET Syllabus
Books
Cut Off
JEE Main Cut Off JEE Advanced Cut Off NEET Cut Off CUET Cut Off COMEDK UGET Cut Off UP Polytechnic JEECUP Cut Off AP POLYCET Cut Off TNEA Cut Off TS POLYCET Cut Off KEAM Cut Off MHT CET Cut Off WB JEE Cut Off ICAR AIEEA Cut Off CUET PG Cut Off NID Cut Off JCECE Cut Off Karnataka PGCET Cut Off NEST Cut Off KCET Cut Off UPESEAT EXAM Cut Off AMUEEE Cut Off IISER IAT Cut Off Bihar Diploma DECE-LE Cut Off JIPMER Cut Off JMI Entrance Exam Cut Off PGDBA Exam Cut Off AP ECET Cut Off GCET Cut Off CEPT Cut Off PU CET Cut Off CEED Cut Off AIAPGET Cut Off JKCET Cut Off HPCET Cut Off CG PAT Cut Off SRMJEEE Cut Off TS PGECET Cut Off BEEE Cut Off MP PAT Cut Off VITMEE Cut Off IIT JAM Cut Off CMC Vellore Cut Off ACET Cut Off TS EAMCET Cut Off PGIMER Exam Cut Off NATA Cut Off AFMC Cut Off AIIMS MBBS Cut Off BITSAT Cut Off BVP CET Cut Off JEXPO Cut Off HITSEEE Cut Off AP EAPCET Cut Off GITAM GAT Cut Off UCEED Cut Off CG PET Cut Off OUAT Cut Off VITEEE Cut Off MU OET Cut Off
Latest Updates
Eligibility
JEE Main Eligibility JEE Advanced Eligibility NEET Eligibility CUET Eligibility COMEDK UGET Eligibility UP Polytechnic JEECUP Eligibility TNEA Eligibility TS POLYCET Eligibility KEAM Eligibility MHT CET Eligibility WB JEE Eligibility OJEE Eligibility ICAR AIEEA Eligibility CUET PG Eligibility NID Eligibility JCECE Eligibility Karnataka PGCET Eligibility NEST Eligibility KCET Eligibility LPUNEST Eligibility PUBDET Eligibility AMUEEE Eligibility IISER IAT Eligibility Bihar Diploma DECE-LE Eligibility NPAT Eligibility JIPMER Eligibility JMI Entrance Exam Eligibility AAU VET Eligibility PGDBA Exam Eligibility AP ECET Eligibility GCET Eligibility CEPT Eligibility PU CET Eligibility GPAT Eligibility CEED Eligibility AIAPGET Eligibility JKCET Eligibility HPCET Eligibility CG PAT Eligibility SRMJEEE Eligibility BCECE Eligibility AGRICET Eligibility TS PGECET Eligibility MP PAT Eligibility MCAER PG CET Eligibility VITMEE Eligibility IIT JAM Eligibility CMC Vellore Eligibility AIMA UGAT Eligibility AIEED Eligibility ACET Eligibility PGIMER Exam Eligibility CENTAC Eligibility NATA Eligibility AFMC Eligibility AIIMS MBBS Eligibility BITSAT Eligibility JEXPO Eligibility HITSEEE Eligibility AP EAPCET Eligibility GITAM GAT Eligibility UPCATET Eligibility UCEED Eligibility CG PET Eligibility OUAT Eligibility IEMJEE Eligibility SEED Eligibility MU OET Eligibility

Understanding Charge Density and Melting Point - Testbook

Last Updated on Mar 12, 2025
Download As PDF
IMPORTANT LINKS
The Solid State
Difference Between Isotropic and Anisotropic Zinc Blende Structure Amorphous Solids Crystalline Solids Metallic Bonds Packing in Solids Crystal Structure Interstitial Compounds Defects in Crystal Structure Frenkel Defect Bravais Lattice Phase Changes Unit Cell Density of Unit Cell Thermal Conductivity of Copper Carbon Nanotubes Polymorphism Fick's Law of Diffusion Ductility and Malleability Crystallization Types of Solids Charge Density and Melting Point Close Packing in Three Dimensions Conductors Crystal Salt Crystal Lattices and Unit Cells Dielectric Properties of Solids Difference Between Crystalline and Amorphous Solids Ductility Electrical Properties of Solids Materials Melting Point Structure of Zeolites "BCC Classification of Crystalline Solids Imperfections in Solids Schottky Defect Thermal Conductivity Unit Cell Packing Efficiency Voids in Solid State Lattice Enthalpy of an Ionic Solid Classification of Solids Based on Crystal Structure Fluorite Structure
Solutions Electrochemistry Chemical Kinetics D and F Block Elements Coordination Compounds Haloalkanes and Haloarenes Alcohols Phenols and Ethers Aldehydes Ketones and Carboxylic Acids Amines Biomolecules Surface Chemistry P Block Elements Polymers Chemistry in Everyday Life States of Matter Hydrogen S Block Elements Environmental Chemistry Some Basic Concepts of Chemistry Structure of Atom Classification of Elements and Periodicity in Properties Chemical Bonding and Molecular Structure Thermodynamics Equilibrium Redox Reactions Organic Chemistry Hydrocarbons

Defining Charge Density

Charge density can be simply understood as the measure of electric charge per unit volume around an ion. In other words:

It is the quotient of the charge of an ion and its volume.

Charge density can be calculated using the formula - charge/volume.

Elements Impacting Charge Density

The charge density of an ion is influenced by the ion’s charge (for instance, Mg has a 2+ charge, while Na has a 1+ charge) and the effective volume over which that charge is spread. This is where the concept of ionic radius comes into play.

For instance, consider magnesium and sodium ions, both having the same electronic configuration, that of neon. This is because Mg loses two electrons and Na loses one, resulting in both having ten electrons. However, Magnesium has an additional proton in its nucleus, which makes its radius smaller. Mg 2+ has an ionic radius of 72 pm, while Na + has an ionic radius of 102 pm.

Since magnesium has a lower volume and a higher charge, its charge density is higher than that of sodium.

Charge Density Trends in the Periodic Table

As we move down a group in the periodic table, the charge of the ion remains constant, but the outer electron moves further from the nucleus due to increased shielding from more full inner electron shells. This leads to an increase in the atomic radius or size of the electron cloud, which in turn makes the outermost electron easier to remove. Therefore, the charge density decreases from top to bottom in a group.

Hence, with a constant charge and an increasing atomic radius, charge density decreases from top to bottom in a group.

Across a period, the proton number increases while the shielding remains the same. This leads to a decrease in the atomic radius or size of the electron cloud of an atom. Consequently, the charge density increases from left to right.

Thus, as the proton number increases and the atomic radius decreases, the charge density increases from left to right.

Defining Melting Point

The melting point is the temperature at which a substance changes from a solid to a liquid state.

More specifically, it is the temperature at which both the solid and liquid phases of a substance are in equilibrium at atmospheric pressure. The melting point of a substance can vary with pressure and is usually specified at standard pressure.

The Interplay between Charge Density and Melting Point

Substances with giant ionic structures have very high melting points. These melting points are determined by the charge of the ion and the size of the ions. Structures that contain double-charged ions have significantly higher melting points than those with single-charged ions.

Only Single Charged Ions Only Double Charged Ions
Compound M.P. / ºC Compound M.P. / ºC
NaCl 801 MgO 2800
KCl 776 CaO 2572
LiF 848 MgS >2000
LiCl 605 CaS 2400

The melting point is influenced by the size of the ion and its charge density.

The smaller the ion and the greater its charge density, the stronger the forces between the ions, leading to a higher melting point. Therefore, KCl has a lower m.p. than NaCl.

It is worth noting that lithium salts do not follow this pattern. Despite the high charge density of lithium ions (due to their small size), lithium chloride does not have a higher melting point than sodium chloride. This is because the lithium ions polarise the electron shell of the much larger negative ion, resulting in a certain degree of covalent character in the lattice that lowers the melting point.

Similarly, beryllium chloride is a simple covalent molecule. The high charge density of the beryllium 2+ ion (which is even smaller than lithium and has a double charge) polarises the chloride ions and forms covalent bonds.

 

More Articles for Chemistry

Frequently Asked Questions

The melting point is affected by the size and charge density of the ion. The greater the charge density and the stronger the forces between the ions, the higher the melting point. As a result, KCl has a lower molecular weight than NaCl.

In chemistry, it can refer to the charge distribution of a particle, such as a molecule, atom, or ion, over its volume. As a result, despite having more electrons than lithium, a lithium cation will carry a higher charge density than a sodium cation due to the lithium cation’s smaller ionic radius.

The periodic trend is that charge density decreases as one moves down the periodic table because the charge remains constant, but the size increases. As the charge increases and the size decreases, the charge density increases across (as it does for Mg and Na).

The element that has the highest charge density is Osmium.

A high density and a high melting point indicate a low reactivity; a low density and a low melting point indicate a high reactivity.

Report An Error