What is the value of

\(({k - {1 \over k}})({k^2 + {1 \over k^2}})({k^4 + {1 \over k^4}})({k^8 + {1 \over k^8}})({k^{16} + {1 \over k^{16}}})({k^{32} + {1 \over k^{32}}})\)?

This question was previously asked in
SSC CGL 2022 Tier-I Official Paper (Held On : 06 Dec 2022 Shift 3)
View all SSC CGL Papers >
  1. \({k^{64} - {1 \over k^{64}}} \over {k + {1 \over k}}\)
  2. \({k^{32} - {1 \over k^{32}}} \over {k - {1 \over k}}\)
  3. \({k^{32} - {1 \over k^{32}}} \over {k + {1 \over k}}\)
  4. \({k^{32} + {1 \over k^{32}}} \over {k + {1 \over k}}\)

Answer (Detailed Solution Below)

Option 1 : \({k^{64} - {1 \over k^{64}}} \over {k + {1 \over k}}\)
super-subscription-prototype
Free
PYST 1: SSC CGL - English (Held On : 11 April 2022 Shift 1)
3.1 Lakh Users
25 Questions 50 Marks 12 Mins

Detailed Solution

Download Solution PDF

Given:

\(({k - {1 \over k}})({k^2 + {1 \over k^2}})({k^4 + {1 \over k^4}})({k^8 + {1 \over k^8}})({k^{16} + {1 \over k^{16}}})({k^{32} + {1 \over k^{32}}})\)

Concept used:

(a2 - b2) = (a + b)(a - b)

Calculation:

\(({k - {1 \over k}})({k^2 + {1 \over k^2}})({k^4 + {1 \over k^4}})({k^8 + {1 \over k^8}})({k^{16} + {1 \over k^{16}}})({k^{32} + {1 \over k^{32}}})\)

⇒ \(\frac{({k - {1 \over k}})({k^2 + {1 \over k^2}})({k^4 + {1 \over k^4}})({k^8 + {1 \over k^8}})({k^{16} + {1 \over k^{16}}})({k^{32} + {1 \over k^{32}}})({k + {1 \over k}})}{({k +{1 \over k}})}\)    [By multiplying and dividing \(k +{1 \over k}\)]

⇒ \(\frac{({k^2 - {1 \over k^2}})({k^2 + {1 \over k^2}})({k^4 + {1 \over k^4}})({k^8 + {1 \over k^8}})({k^{16} + {1 \over k^{16}}})({k^{32} + {1 \over k^{32}}})}{({k +{1 \over k}})}\) 

⇒ \(\frac{({k^4 - {1 \over k^4}})({k^4 + {1 \over k^4}})({k^8 + {1 \over k^8}})({k^{16} + {1 \over k^{16}}})({k^{32} + {1 \over k^{32}}})}{({k +{1 \over k}})}\) 

⇒ \(\frac{({k^8 -{1 \over k^8}})({k^8 + {1 \over k^8}})({k^{16} + {1 \over k^{16}}})({k^{32} + {1 \over k^{32}}})}{({k +{1 \over k}})}\) 

⇒ \(\frac{({k^{16} - {1 \over k^{16}}})({k^{16} + {1 \over k^{16}}})({k^{32} + {1 \over k^{32}}})}{({k +{1 \over k}})}\) 

⇒ \(\frac{({k^{32} - {1 \over k^{32}}})({k^{32} + {1 \over k^{32}}})}{({k +{1 \over k}})}\) 

⇒ \(\frac{{k^{64} - {1 \over k^{64}}}}{{k +{1 \over k}}}\) 

∴ The required answer is \(\frac{{k^{64} - {1 \over k^{64}}}}{{k +{1 \over k}}}\).

Latest SSC CGL Updates

Last updated on Jun 11, 2025

-> The SSC CGL Notification 2025 has been released on 9th June 2025 on the official website at ssc.gov.in.

-> The UPSC Prelims Result 2025 and UPSC IFS Result 2025 has been released @upsc.gov.in

-> The SSC CGL exam registration process is now open and will continue till 4th July 2025, so candidates must fill out the SSC CGL Application Form 2025 before the deadline.

-> This year, the Staff Selection Commission (SSC) has announced approximately 14,582 vacancies for various Group B and C posts across government departments.

->  The SSC CGL Tier 1 exam is scheduled to take place from 13th to 30th August 2025.

->  Aspirants should visit ssc.gov.in 2025 regularly for updates and ensure timely submission of the CGL exam form.

-> Candidates can refer to the CGL syllabus for a better understanding of the exam structure and pattern.

-> The CGL Eligibility is a bachelor’s degree in any discipline.

-> Candidates selected through the SSC CGL exam will receive an attractive salary. Learn more about the SSC CGL Salary Structure.

-> Attempt SSC CGL Free English Mock Test and SSC CGL Current Affairs Mock Test.

-> Candidates should also use the SSC CGL previous year papers for a good revision. 

More Algebra Questions

Get Free Access Now
Hot Links: teen patti master purana teen patti diya teen patti master golden india teen patti yes