3 tanθ = \(2\sqrt 3 \) sinθ, 0° < θ < 90° ആണെങ്കിൽ,  \(\rm \frac{{\cos e{c^2}2\,\theta + {{\cot }^2}2\,\theta }}{{{{\sin }^2}\,\theta + {{\tan }^2}2\,\theta }}\) ഇതിന്റെ മൂല്യം ആണ്:

This question was previously asked in
SSC CGL Tier 2 Quant Previous Paper 1 (Held On: 29 Jan 2022)
View all SSC CGL Papers >
  1. \(\frac{{20}}{{39}}\)
  2. \(\frac{{20}}{{27}}\)
  3. \(\frac{{4}}{{13}}\)
  4. \(\frac{{4}}{{3}}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{{20}}{{39}}\)
vigyan-express
Free
PYST 1: SSC CGL - General Awareness (Held On : 20 April 2022 Shift 2)
3.6 Lakh Users
25 Questions 50 Marks 10 Mins

Detailed Solution

Download Solution PDF

നൽകിയിരിക്കുന്നത്:

3 tanθ = \(2√ 3 \) sinθ

ഉപയോഗിച്ച സൂത്രവാക്യം:

tanθ = \(\frac{sinθ }{{cosθ }}\)

cos 30° = \(\frac{√3}{{2}}\), cosec 60° = \(\frac{2}{{√3}}\)

Cot 60° = \(\frac{1}{{√ 3}}\), sin 30° = \(\frac{1}{{2}}\), tan 60° = √3

കണക്കുകൂട്ടൽ: 

നമുക്കുള്ളത് 3 tanθ = \(2√ 3 \) sinθ

⇒ 3 \(\frac{sinθ }{{cosθ }}\) = 2√3 sinθ 

⇒ \(\frac{3}{{cosθ }}\) = 2√3

⇒ cosθ = \(\frac{√3}{{2}}\) = cos 30° 

⇒ θ = 30° 

ഇപ്പോൾ,

 \(\rm \frac{{\cos e{c^2}2\,θ + {{\cot }^2}2\,θ }}{{{{\sin }^2}\,θ + {{\tan }^2}2\,θ }}\) ഇതിന്റെ മൂല്യമാണ് 

⇒ \(\frac{cosec^2 60° + cot^2 60° }{{sin^2 30° + tan^2 60° }}\)   

⇒ \(\frac{(\frac{2}{{√3}})^2 \ + \ (\frac{1}{{√3}})^2} {(\frac{1}{{2}})^2 \ + \ (\sqrt3)^2}\)

⇒ \(\frac{\frac{4}{3} + \frac{1}{3}}{\frac{1}{4} + \frac{3}{1}}\) = \(\frac{\frac{5}{3} }{\frac{13}{4} }\)

⇒ \(\frac{{20}}{{39}}\)

∴ ആവശ്യമായ മൂല്യമാണ് \(\frac{{20}}{{39}}\).

Latest SSC CGL Updates

Last updated on Jun 13, 2025

-> The SSC CGL Notification 2025 has been released on 9th June 2025 on the official website at ssc.gov.in.

-> The SSC CGL exam registration process is now open and will continue till 4th July 2025, so candidates must fill out the SSC CGL Application Form 2025 before the deadline.

-> This year, the Staff Selection Commission (SSC) has announced approximately 14,582 vacancies for various Group B and C posts across government departments.

->  The SSC CGL Tier 1 exam is scheduled to take place from 13th to 30th August 2025.

->  Aspirants should visit ssc.gov.in 2025 regularly for updates and ensure timely submission of the CGL exam form.

-> Candidates can refer to the CGL syllabus for a better understanding of the exam structure and pattern.

-> The CGL Eligibility is a bachelor’s degree in any discipline.

-> Candidates selected through the SSC CGL exam will receive an attractive salary. Learn more about the SSC CGL Salary Structure.

-> Attempt SSC CGL Free English Mock Test and SSC CGL Current Affairs Mock Test.

-> Candidates should also use the SSC CGL previous year papers for a good revision. 

Get Free Access Now
Hot Links: teen patti star apk teen patti real cash withdrawal online teen patti real money teen patti apk