Question
Download Solution PDF3 tanθ = \(2\sqrt 3 \) sinθ, 0° < θ < 90° ആണെങ്കിൽ, \(\rm \frac{{\cos e{c^2}2\,\theta + {{\cot }^2}2\,\theta }}{{{{\sin }^2}\,\theta + {{\tan }^2}2\,\theta }}\) ഇതിന്റെ മൂല്യം ആണ്:
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFനൽകിയിരിക്കുന്നത്:
3 tanθ = \(2√ 3 \) sinθ
ഉപയോഗിച്ച സൂത്രവാക്യം:
tanθ = \(\frac{sinθ }{{cosθ }}\)
cos 30° = \(\frac{√3}{{2}}\), cosec 60° = \(\frac{2}{{√3}}\)
Cot 60° = \(\frac{1}{{√ 3}}\), sin 30° = \(\frac{1}{{2}}\), tan 60° = √3
കണക്കുകൂട്ടൽ:
നമുക്കുള്ളത് 3 tanθ = \(2√ 3 \) sinθ
⇒ 3 \(\frac{sinθ }{{cosθ }}\) = 2√3 sinθ
⇒ \(\frac{3}{{cosθ }}\) = 2√3
⇒ cosθ = \(\frac{√3}{{2}}\) = cos 30°
⇒ θ = 30°
ഇപ്പോൾ,
\(\rm \frac{{\cos e{c^2}2\,θ + {{\cot }^2}2\,θ }}{{{{\sin }^2}\,θ + {{\tan }^2}2\,θ }}\) ഇതിന്റെ മൂല്യമാണ്
⇒ \(\frac{cosec^2 60° + cot^2 60° }{{sin^2 30° + tan^2 60° }}\)
⇒ \(\frac{(\frac{2}{{√3}})^2 \ + \ (\frac{1}{{√3}})^2} {(\frac{1}{{2}})^2 \ + \ (\sqrt3)^2}\)
⇒ \(\frac{\frac{4}{3} + \frac{1}{3}}{\frac{1}{4} + \frac{3}{1}}\) = \(\frac{\frac{5}{3} }{\frac{13}{4} }\)
⇒ \(\frac{{20}}{{39}}\)
∴ ആവശ്യമായ മൂല്യമാണ് \(\frac{{20}}{{39}}\).
Last updated on Jun 13, 2025
-> The SSC CGL Notification 2025 has been released on 9th June 2025 on the official website at ssc.gov.in.
-> The SSC CGL exam registration process is now open and will continue till 4th July 2025, so candidates must fill out the SSC CGL Application Form 2025 before the deadline.
-> This year, the Staff Selection Commission (SSC) has announced approximately 14,582 vacancies for various Group B and C posts across government departments.
-> The SSC CGL Tier 1 exam is scheduled to take place from 13th to 30th August 2025.
-> Aspirants should visit ssc.gov.in 2025 regularly for updates and ensure timely submission of the CGL exam form.
-> Candidates can refer to the CGL syllabus for a better understanding of the exam structure and pattern.
-> The CGL Eligibility is a bachelor’s degree in any discipline.
-> Candidates selected through the SSC CGL exam will receive an attractive salary. Learn more about the SSC CGL Salary Structure.
-> Attempt SSC CGL Free English Mock Test and SSC CGL Current Affairs Mock Test.
-> Candidates should also use the SSC CGL previous year papers for a good revision.