Question
Download Solution PDFMatch the LIST-I with LIST-II: Match the logical equivalence propositions
LIST - I |
LIST - II |
||
A. |
P → q |
I. |
(p ∧ q) ∨(¬p ∨ ¬q) |
B. |
¬(p ∨ (¬p ∧ q)) |
II. |
¬p ∨ q |
C. |
p ↔ q |
III. |
¬(p ∨ q) |
D. |
¬(p ↔ q) |
IV. |
¬p ↔ q |
Choose the correct answer from the options given below:
- A - I, B - III, C - II, D - IV
- A - I, B - II, C - III, D - IV
- A - II, B - III, C - I, D - IV
- A - II, B - III, C - IV, D - I
Answer (Detailed Solution Below)
Option 3 : A - II, B - III, C - I, D - IV
India's Super Teachers for all govt. exams Under One Roof
FREE
Demo Classes Available*
Enroll For Free Now
Detailed Solution
Download Solution PDFThe correct answer is Option 3.
Key Points
Let's match the logical equivalence propositions between LIST-I and LIST-II:
LIST - I | LIST - II |
---|---|
A. P → q | II. ¬p ∨ q |
B. ¬(p ∨ (¬p ∧ q)) | III. ¬(p ∨ q) |
C. p ↔ q | I. (p ∧ q) ∨ (¬p ∨ ¬q) |
D. ¬(p ↔ q) | IV. ¬p ↔ q |
The matchings are:
- A - II: P → q is logically equivalent to ¬p ∨ q
- B - III: ¬(p ∨ (¬p ∧ q)) is logically equivalent to ¬(p ∨ q)
- C - I: p ↔ q is logically equivalent to (p ∧ q) ∨ (¬p ∨ ¬q)
- D - IV: ¬(p ↔ q) is logically equivalent to ¬p ↔ q
Therefore, the correct option is Option 3.
India’s #1 Learning Platform
Start Complete Exam Preparation
Daily Live MasterClasses
Practice Question Bank
Mock Tests & Quizzes
Trusted by 7.2 Crore+ Students