Let B(0,1) = {(x,y) ∈ ℝ2|x2 + y2 < 1} be the open unit disc in ℝ2, ∂B(0, 1) denote the boundary of B(0,1), and v denote unit outward normal to ∂B(0, 1). Let f : ℝ2 → ℝ be a given continuous function. The Euler-Lagrange equation of the minimization problem  

\(\rm min \left\{\frac{1}{2}\iint_{B(0,1)}|\nabla u|^2dxdy+\frac{1}{2}\iint_{B(0, 1)}e^{u^2}dxdy+∈t_{\partial B(0, 1)}fuds\right\}\)

subject to u ∈ C1 \(\rm \overline{B(0, 1)}\) is

This question was previously asked in
CSIR-UGC (NET) Mathematical Science: Held on (2024 June)
View all CSIR NET Papers >
  1. \(\rm \left\{\begin{matrix}\Delta u=-ue^{u^2}&\rm in \ B(0, 1)\\\ \frac{\partial u}{\partial \nu}=f&\rm on\ \partial B(0, 1\end{matrix}\right.\)
  2. \(\rm \left\{\begin{matrix}\Delta u=ue^{u^2}+f&\rm in \ B(0, 1)\\\ u=0&\rm on\ \partial B(0, 1\end{matrix}\right.\)
  3. \(\rm \left\{\begin{matrix}\Delta u=ue^{u^2}&\rm in \ B(0, 1)\\\ \frac{\partial u}{\partial \nu}=-f&\rm on\ \partial B(0, 1\end{matrix}\right.\)
  4. \(\rm \left\{\begin{matrix}\Delta u=ue^{u^2}&\rm in \ B(0, 1)\\\ \frac{\partial u}{\partial \nu}+u=f&\rm on\ \partial B(0, 1\end{matrix}\right.\)

Answer (Detailed Solution Below)

Option 3 : \(\rm \left\{\begin{matrix}\Delta u=ue^{u^2}&\rm in \ B(0, 1)\\\ \frac{\partial u}{\partial \nu}=-f&\rm on\ \partial B(0, 1\end{matrix}\right.\)
Free
Seating Arrangement
3.4 K Users
10 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF
The Correct answer is (3).

We will update the solution later.
Latest CSIR NET Updates

Last updated on Jun 23, 2025

-> The last date for CSIR NET Application Form 2025 submission has been extended to 26th June 2025.

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Partial Differential Equations Questions

Get Free Access Now
Hot Links: teen patti master apk best teen patti comfun card online teen patti tiger teen patti apk