\(\displaystyle\lim_{\rm x\rightarrow 0} \rm x^2 \ sin \left(\dfrac{1}{x}\right)\) किसके बराबर है?

  1. 0
  2. 1
  3. 1/2
  4. सीमा मौजूद नहीं है। 

Answer (Detailed Solution Below)

Option 1 : 0
Free
NDA 01/2025: English Subject Test
5.5 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

सैंडविच प्रमेय:

माना कि f(x), g(x) और h(x) एक सामान्य डोमेन D वाली तीन वास्तविक संख्याएँ हैं जिससे बिंदु c वाले कुछ अंतराल में g(x) ≤ f(x) ≤ h(x) ∀ x है। तो, 

यदि \(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{g}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{h}}\left( {\rm{x}} \right) = {\rm{L\;then\;}}\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{f}}\left( {\rm{x}} \right) = {\rm{L}}\) है। 

 

गणना:

निम्न का मान ज्ञात करने के लिए: \(\displaystyle\lim_{\rm x\rightarrow 0} \rm x^2 \ sin \left(\dfrac{1}{x}\right)\) का मान 

चूँकि हम जानते हैं, \(\rm -1 \leq \sin (\dfrac{1}{x}) \leq 1\)

xसे गुणा करने पर, हमें निम्न प्राप्त होता है 

\(\Rightarrow \rm -x^2 \leq x^2\sin (\dfrac{1}{x}) \leq x^2\)

\(\Rightarrow \displaystyle\lim_{\rm x\rightarrow 0} \rm (-x^2) \leq \displaystyle\lim_{\rm x\rightarrow 0} \rm x^2 \ sin \left(\dfrac{1}{x}\right) \leq \displaystyle\lim_{\rm x\rightarrow 0} \rm x^2\)

\(\Rightarrow 0 \leq \displaystyle\lim_{\rm x\rightarrow 0} \rm x^2 \ sin \left(\dfrac{1}{x}\right) \leq 0\)

∴ \(\displaystyle\lim_{\rm x\rightarrow 0} \rm x^2 \ sin \left(\dfrac{1}{x}\right)\)= 0

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Limit and Continuity Questions

Get Free Access Now
Hot Links: teen patti gold download apk teen patti 100 bonus teen patti master online