अवकल समीकरण \(x^2 \frac {d^2y}{dx^2} + 4x\frac{dy}{dx}+2y=0\) का हल ________ होगा, जहाँ c1 और c2 अचर हैं।

This question was previously asked in
AAI ATC Junior Executive 2018 Official Paper (Shift 3)
View all AAI JE ATC Papers >
  1. y = c1 + c2 x2
  2. \(y = \frac{c_1}{x} + \frac{c_2}{x^2}\)
  3. y = c1 cos x + c2 sin x
  4. y = c1 x + c2 x2

Answer (Detailed Solution Below)

Option 2 : \(y = \frac{c_1}{x} + \frac{c_2}{x^2}\)
Free
AAI ATC JE Physics Mock Test
6.6 K Users
15 Questions 15 Marks 15 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

सहायक समीकरण के विभिन्न मूलों के लिए अवकल समीकरण का हल (पूरक फलन) नीचे दिखाया गया है।

सहायक समीकरण के मूल

पूरक फलन

m1, m2, m3, … (वास्तविक और भिन्न मूल)

\({C_1}{e^{{m_1}x}} + {C_2}{e^{{m_2}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

m1, m1, m3, … (दो वास्तविक और समान मूल)

 

\(\left( {{C_1} + {C_2}x} \right){e^{{m_1}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

m1, m1, m1, m4… (तीन वास्तविक और समान मूल)

\(\left( {{C_1} + {C_2}x + {C_3}{x^2}} \right){e^{{m_1}x}} + {C_4}{e^{{m_4}x}} + \ldots\)

α + i β, α – i β, m3, … (काल्पनिक मूलों का एक जोड़ा)

\({e^{\alpha x}}\left( {{C_1}\cos \beta x + {C_2}\sin \beta x} \right) + {C_3}{e^{{m_3}x}} + \ldots\)

α ± i β, α ± i β, m5, … (समान काल्पनिक मूलों के दो जोड़े)

\({e^{\alpha x}}\left( {\left( {{C_1} + {C_2}x} \right)\cos \beta x + \left( {{C_3} + {C_4}x} \right)\sin \beta x} \right) + {C_5}{e^{{m_5}x}} + \ldots\)

गणना:

दिया है:

\({x^2}\frac{{{d^2}y}}{{d{x^2}}} + 4x\frac{{dy}}{{dx}} + 2y = 0\)

x = eरखने पर 

⇒ t = ln x

\(\begin{array}{l} \frac{{dy}}{{dx}} = \frac{{dy}}{{dt}}.\frac{{dt}}{{dx}} = \frac{{dy}}{{dt}}.\frac{1}{x} ⇒ x\frac{{dy}}{{dx}} = \frac{{dy}}{{dt}} = Dy\\ {x^2}\frac{{{d^2}y}}{{d{x^2}}} = D(D - 1)y;\,{x^3}\frac{{{d^3}y}}{{d{x^3}}} = D(D - 1)(D - 2)y \end{array}\)

अब, उपरोक्त अवकल समीकरण निम्न प्रकार बन जाती है

D(D - 1)y + 4 Dy + 2y = 0 ⇒ (D2 + 3D + 2)y = 0

⇒ D = -1, -2;

अब हल निम्न होगा  y = C1e-t + C2e-2t

x = eके मानों को रखने पर 

\(\Rightarrow y = \frac{c_1}{x} + \frac{c_2}{x^2}\)

Latest AAI JE ATC Updates

Last updated on May 26, 2025

-> AAI ATC exam date 2025 will be notified soon. 

-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025. 

-> AAI JE ATC 2025 notification is released on 4th April 2025, along with the details of application dates, eligibility, and selection process.

-> Total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.

-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in Airports Authority of India (AAI).

-> The Selection of the candidates is based on the Computer Based Test, Voice Test and Test for consumption of Psychoactive Substances.

-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).

-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.

-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.

More Differential Equations Questions

Get Free Access Now
Hot Links: teen patti yas teen patti joy 51 bonus teen patti teen patti diya