मूलबिन्दु (ऑरिजिन) से समतल x + 2y - 2z = 9 पर अभिलम्ब की लम्बाई किसके बराबर है?

This question was previously asked in
NDA (Held On: 10 Sept 2017) Maths Previous Year paper
View all NDA Papers >
  1. 2 यूनिट
  2. 3 यूनिट
  3. 4 यूनिट
  4. 5 यूनिट

Answer (Detailed Solution Below)

Option 2 : 3 यूनिट
Free
NDA 01/2025: English Subject Test
30 Qs. 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

धारणा:

एक समतल से एक बिंदु की लंबवत दूरी

हम कार्टेशियन समीकरण Ax + By + Cz = d द्वारा दिए गए एक समतल और एक बिंदु जिसका निर्देशांक p (x1, y1, z1) है पर विचार करें

  

अब दूरी = 

गणना:

हम जानते हैं कि लंब हमेशा समतल के लंबवत होता है,

दिया हुआ: समतल का समीकरण x + 2y - 2z = 9 है

⇒ x + 2y – 2z - 9 = 0

अब हमें मूल (0, 0, 0) से दूरी का पता लगाना होगा

हम जानते हैं कि दूरी = 

∴ दूरी = 

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Distance from a Plane Questions

More Three Dimensional Geometry Questions

Hot Links: teen patti refer earn teen patti 3a teen patti gold apk download teen patti sweet teen patti master apk download