मानें कि p एक धनात्मक पूर्णांक है। संवृत वक्र r(t) = eit, 0 ≤ t < 2π पर विचार करें। मानें कि f ऐसा फलन है जो {z ∶ |z| < R} में सममितीय (होलामॉर्फिक) है जहां R > 1 है। यदि f के शून्य केवल z0 में हो, z≠ 0, |z0| < R, और उसकी बहुकता (multiplicity) q हो, तब

\(\frac{1}{2 π i} \int_r \frac{f^{\prime}(z)}{f(z)} z^p d z\)

का मान निम्न है

This question was previously asked in
CSIR-UGC (NET) Mathematical Science: Held on (26 Nov 2020)
View all CSIR NET Papers >
  1. \(q z_0^p\)
  2. \(z_0 q^p\)
  3. \(p z_0^q\)
  4. \(z_0 p^q\)

Answer (Detailed Solution Below)

Option 1 : \(q z_0^p\)
Free
Seating Arrangement
3.4 K Users
10 Questions 20 Marks 15 Mins
Latest CSIR NET Updates

Last updated on Jun 5, 2025

-> The NTA has released the CSIR NET 2025 Notification for the June session.

-> The CSIR NET Application Form 2025 can be submitted online by 23rd June 2025

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Contour Integral & Theorem Questions

More Complex Analysis Questions

Get Free Access Now
Hot Links: teen patti comfun card online teen patti refer earn teen patti boss teen patti game - 3patti poker teen patti online game