Question
Download Solution PDFमानें कि p एक धनात्मक पूर्णांक है। संवृत वक्र r(t) = eit, 0 ≤ t < 2π पर विचार करें। मानें कि f ऐसा फलन है जो {z ∶ |z| < R} में सममितीय (होलामॉर्फिक) है जहां R > 1 है। यदि f के शून्य केवल z0 में हो, z0 ≠ 0, |z0| < R, और उसकी बहुकता (multiplicity) q हो, तब
\(\frac{1}{2 π i} \int_r \frac{f^{\prime}(z)}{f(z)} z^p d z\)
का मान निम्न है
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFLast updated on Jun 5, 2025
-> The NTA has released the CSIR NET 2025 Notification for the June session.
-> The CSIR NET Application Form 2025 can be submitted online by 23rd June 2025
-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences.
-> Postgraduates in the relevant streams can apply for this exam.
-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.