यदि अतिपरवलय की उत्केंद्रता √2 है तो अतिपरवलय का सामान्य समीकरण क्या होगा?

  1. 2x2 - y2 = a2
  2. x2 - y2 = a2
  3. x2 - 2y2 = a2
  4. 2x2 - 8y2 = a2

Answer (Detailed Solution Below)

Option 2 : x2 - y2 = a2
Free
CRPF Head Constable & ASI Steno (Final Revision): Mini Mock Test
20.7 K Users
40 Questions 40 Marks 45 Mins

Detailed Solution

Download Solution PDF

अवधारणा:

अतिपरवलय \(\rm \frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) की उत्केंद्रता 'e' इसके द्वारा दी जाती है, a > b के लिए e = \(\rm \sqrt{1+\frac{b^2}{a^2}}\)

गणना:

मान लीजिए कि अतिपरवलय का समीकरण \(\rm \frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) है

उत्केंद्रता √2 है

⇒ √2 = \(\rm \sqrt{1+\frac{b^2}{a^2}}\)

दोनों पक्षों का वर्ग करके हमें मिलता है

⇒ 2 = \(\rm 1+\frac{b^2}{a^2}\)

⇒ \(\rm \frac{b^2}{a^2}\) = 1

⇒ a2 = b2

इसलिए आवश्यक समीकरण है, \(\rm \frac{x^2}{a^2}-\frac{y^2}{a^2}=1\) या x2 - y2 = a2

Latest Indian Coast Guard Navik GD Updates

Last updated on Jun 11, 2025

-> The Indian Coast Guard Navik GD is a prestigious exam for those who want to serve the country in Defence Services.

-> A total of 260 vacancies have been released through the Coast Guard Enrolled Personnel Test (CGEPT) for the 01/2026 and 02/2026 batch.

-> Candidates can apply online from 11th to 25th June 2025.

-> Candidates who have completed their 10+2 with Maths and Physics are eligible for this post. 

-> Candidates must go through the Indian Coast Guard Navik GD previous year papers.

More Hyperbola Questions

More Parabola, Ellipse and Hyperbola Questions

Get Free Access Now
Hot Links: teen patti bliss teen patti flush teen patti glory