रैखिक समीकरणों के निकाय के लिए: x − 2y = 1, x − y + kz = −2, ky + 4z = 6,k ∈ R

निम्नलिखित कथनों पर विचार करते हैं:

(A) यदि k ≠ 2,k ≠ −2 तो निकाय का अद्वितीय हल होगा।

(B) यदि k = -2 तो निकाय का अद्वितीय हल होगा।

(C) यदि k = 2 तो निकाय का अद्वितीय हल होगा।

(D) यदि k = 2 तो निकाय का कोई हल नहीं होगा।

(E) यदि k ≠ -2 तो निकाय के अनंत हल होंगे।

निम्नलिखित में से कौन से कथन सही हैं?

  1. (B) और (E) केवल
  2. (C) और (D) केवल
  3. (A) और (D) केवल
  4. (A) और (E) केवल

Answer (Detailed Solution Below)

Option 3 : (A) और (D) केवल

Detailed Solution

Download Solution PDF

अवधारणा:

(i) यदि Δ ≠ 0 और Δx, Δy, Δz ≠ 0 में से कम से कम एक है, तो दिए गए समीकरणों के निकाय संगत हैं और इसका अद्वितीय गैर-तुच्छ हल है।

(ii) यदि Δ ≠ 0 & Δx = Δy = Δz = 0, तो दिए गए समीकरणों के निकाय संगत हैं और इसका केवल तुच्छ हल है।

(iii) यदि Δ = Δx = Δy = Δz = 0, तो दिए गए समीकरणों के निकाय संगत हैं और इसके अनंत हल हैं

गणना:

दिया गया है,

x - 2y + 0.z = 1

x - y + kz = - 2

0.x + ky + 4z = 6

\( Δ= \left|\begin{array}{ccc} 1 & -2 & 0 \\ 1 & -1 & k \\ 0 & k & 4 \end{array}\right|\)

= 4 - k2

अद्वितीय हल के लिए, 4 - k2 ≠ 0

⇒ k ≠ ±2

k = 2 के लिए,

x - 2y + 0.z = 1

x - y + 2z = -2

0.x + 2y + 4z = 6

\(Δ_{\rm {x}}=\left|\begin{array}{ccc} 1 & -2 & 0 \\ -2 & -1 & 2 \\ 6 & 2 & 4 \end{array}\right|\)

= -8 + 2 (-20)

⇒Δx = -48 ≠ 0

k = 2 के लिए,Δx ≠ 0

⇒ k = 2 के लिए, निकाय का कोई हल नहीं है।

∴ (A) यदि k ≠ 2,k ≠ −2 तो निकाय का अद्वितीय हल होगा और (D) यदि k = 2 तो निकाय का कोई हल नहीं होगा।

सही उत्तर विकल्प 3 है।

More System of Linear Equations Questions

More Linear Algebra Questions

Get Free Access Now
Hot Links: teen patti master apk download teen patti wealth teen patti list teen patti sweet