Find the shortest distance between the lines \(\frac{x}{-1}=\frac{y-2}{0}=\frac{z}{1}\) and \(\frac{x+2}{1}=\frac{y}{1}=\frac{z}{0}\)

  1. 1
  2. 3
  3. 2
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0
Free
CUET General Awareness (Ancient Indian History - I)
11.6 K Users
10 Questions 50 Marks 12 Mins

Detailed Solution

Download Solution PDF

Concept:

The shortest distance between the lines \(\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}\)  and \(\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}\) is given by:\(d= \frac{\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1}& b_{1} & c_{1}\\ a_{2}& b_{2} & c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^{2}+(c_{1}a_{2}-c_{2}a_{1})^{2}+(a_{1}b_{2}-a_{2}b_{1})^{2}}}\)

Calculation:

Here we have to find the shortest distance between the lines ​​\(\frac{x}{-1}=\frac{y-2}{0}=\frac{z}{1}\) and \(\frac{x+2}{1}=\frac{y}{1}=\frac{z}{0}\)

Let line L1 be represented by the equation \(\frac{x}{-1}=\frac{y-2}{0}=\frac{z}{1}\) and line L2 be represented by the equation \(\frac{x+2}{1}=\frac{y}{1}=\frac{z}{0}\)

⇒ x1 = 0, y1 = 2, z1 = 0  and a1 = -1, b1 = 0, c1 = 1.

⇒ x2 = -2, y2 = 0, z2 = 0  and a2 = 1, b2 = 1, c2 = 0.

∵ The shortest distance between the lines is given by:  \(d= \frac{\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1}& b_{1} & c_{1}\\ a_{2}& b_{2} & c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^{2}+(c_{1}a_{2}-c_{2}a_{1})^{2}+(a_{1}b_{2}-a_{2}b_{1})^{2}}}\)

⇒ \(d= \frac{\begin{vmatrix} -2-0 &0-2&0-0 \\ -1& 0 & 1\\ 1& 1 & 0 \end{vmatrix}}{\sqrt{(0-1)^{2}+(0-1)^{2}+(-1-0)^{2}}}\)    

⇒ \(d= \frac{\begin{vmatrix} -2 &-2&0 \\ -1& 0 & 1\\ 1& 1 & 0 \end{vmatrix}}{\sqrt{1+1+1}}\)

⇒ d = 0

Hence, option 4 is correct.

Latest CUET Updates

Last updated on Jun 17, 2025

-> The CUET 2025 provisional answer key has been made public on June 17, 2025 on the official website.

-> The CUET 2025 Postponed for 15 Exam Cities Centres.

-> The CUET 2025 Exam Date was between May 13 to June 3, 2025. 

-> 12th passed students can appear for the CUET UG exam to get admission to UG courses at various colleges and universities.

-> Prepare Using the Latest CUET UG Mock Test Series.

-> Candidates can check the CUET Previous Year Papers, which helps to understand the difficulty level of the exam and experience the same.

More Skew Lines Questions

Get Free Access Now
Hot Links: teen patti all games teen patti master new version all teen patti master