Find a matrix X such that 2A + B + X = 0 , where

\(A=\begin{bmatrix} -1 & 2 \\\ 3 & 4 \end{bmatrix} \ \text{and} \;\rm B =\ \begin{bmatrix} 3 & -2 \\\ 1 & 5 \end{bmatrix} \ ?\)

This question was previously asked in
NIMCET 2017 Official Paper
View all NIMCET Papers >
  1. \(\begin{bmatrix} 1 & 2 \\\ 7 & 13 \end{bmatrix}\)
  2. \(\begin{bmatrix} -1 & -2 \\\ -7 & -13 \end{bmatrix}\)
  3. \(\begin{bmatrix} 13 & 2 \\\ 7 & 1 \end{bmatrix}\)
  4. \(\begin{bmatrix} -13 & -2 \\\ -7 & -1 \end{bmatrix}\)

Answer (Detailed Solution Below)

Option 2 : \(\begin{bmatrix} -1 & -2 \\\ -7 & -13 \end{bmatrix}\)
Free
NIMCET 2020 Official Paper
10.7 K Users
120 Questions 480 Marks 120 Mins

Detailed Solution

Download Solution PDF

Concept:

Two matrices may be added or subtracted only if they have the same dimension; that is, they must have the same number of rows and columns. 

Addition or subtraction is accomplished by adding or subtracting corresponding elements.

 

Calculations:

Given, \(A=\begin{bmatrix} -1 & 2 \\\ 3 & 4 \end{bmatrix} \ \text{and} \;\; \rm B = \ \begin{bmatrix} 3 & -2 \\\ 1 & 5 \end{bmatrix} \ \)

Consider, 2A + B + X = 0

⇒ \(\rm 2\begin{bmatrix} -1 & 2 \\\ 3 & 4 \end{bmatrix} + \ \begin{bmatrix} 3 & -2 \\\ 1 & 5 \end{bmatrix} \ \) + X = \(\begin{bmatrix} 0 & 0\\ 0 &0 \end{bmatrix}\)

Two matrices may be added or subtracted only if they have the same dimension; that is, they must have the same number of rows and columns. Addition or subtraction is accomplished by adding or subtracting corresponding elements.

⇒ \(\rm \begin{bmatrix} 1 & 2 \\\ 7 & 13 \end{bmatrix} \ \) + X = \(\begin{bmatrix} 0 & 0\\ 0 &0 \end{bmatrix}\)

⇒ X = \(\begin{bmatrix} 0 & 0\\ 0 &0 \end{bmatrix}\) - \(\rm \begin{bmatrix} 1 & 2 \\\ 7 & 13 \end{bmatrix} \ \)

⇒ X = \(\rm \begin{bmatrix} -1 & -2 \\\ - 7 & -13 \end{bmatrix} \ \)

Latest NIMCET Updates

Last updated on Jun 12, 2025

->The NIMCET 2025 provisional answer key is out now. Candidates can log in to the official website to check their responses and submit objections, if any till June 13, 2025.

-> NIMCET exam was conducted on June 8, 2025.

-> NIMCET 2025 admit card was out on June 3, 2025.

-> NIMCET 2025 results will be declared on June 27, 2025. Candidates are advised to keep their login details ready to check their scrores as soon as the result is out.

-> Check NIMCET 2025 previous year papers to know the exam pattern and improve your preparation.

More Operations on Matrices Questions

More Matrices Questions

Get Free Access Now
Hot Links: teen patti master app teen patti wink teen patti master old version