যদি \(\lim _{n \rightarrow \infty}\left(\sqrt{n^2-n-1}+n \alpha+\beta\right)=0\) হয়, তাহলে 8(α + β) এর মান কত?

  1. 4
  2. -8
  3. -4
  4. 8

Answer (Detailed Solution Below)

Option 3 : -4

Detailed Solution

Download Solution PDF

গণনা:

প্রদত্ত, \(\lim _{n \rightarrow \infty}\left(\sqrt{n^2-n-1}+n \alpha+\beta\right)=0\)

= \(\lim _{n \rightarrow \infty} n\left[\sqrt{1-\frac{1}{n}-\frac{1}{n^2}}+\alpha+\frac{\beta}{n}\right]=0\)

সীমাটি সংজ্ঞায়িত হওয়ার জন্য, α = -1

এখন, \(\lim _{n \rightarrow \infty}\left(\sqrt{n^2-n-1}+n \alpha+\beta\right)=0\)

\(\lim _{n \rightarrow \infty} n\left[\left\{1-\left(\frac{1}{n}+\frac{1}{n^2}\right)\right\}^{\frac{1}{2}}+\frac{\beta}{n}-1\right]=0\)

\(\lim _{n \rightarrow \infty} n \frac{\left(1-\frac{1}{2}\left(\frac{1}{n}+\frac{1}{n^2}\right)+\ldots\right)+\frac{\beta}{n}-1}{\frac{1}{n}}=0\)

\(\beta-\frac{1}{2}=0\)

\(\beta=\frac{1}{2}\)

α = -1 এবং β = \(\frac{1}{2}\)

∴ 8(α + β) = \(8\left(-\frac{1}{2}\right)\)

= - 4

∴ 8(α + β) এর মান -4।

সঠিক উত্তর বিকল্প 3.

More Limit and Continuity Questions

Get Free Access Now
Hot Links: teen patti master 2024 online teen patti real money lotus teen patti