Synchronising of Alternators MCQ Quiz in తెలుగు - Objective Question with Answer for Synchronising of Alternators - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Mar 11, 2025

పొందండి Synchronising of Alternators సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Synchronising of Alternators MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Synchronising of Alternators MCQ Objective Questions

Top Synchronising of Alternators MCQ Objective Questions

Synchronising of Alternators Question 1:

The synchronizing power for one mechanical degree of displacement for a 3-phase, 20000 kVA, 6600 V, 50 Hz, 12-pole machine having Xs = 1.65 Ω and negligible resistance is

  1. 1024.6 W
  2. 921.9 kW
  3. 782.6 kW
  4. 1182.6 kW

Answer (Detailed Solution Below)

Option 2 : 921.9 kW

Synchronising of Alternators Question 1 Detailed Solution

Synchronizing power of a synchronous machine is given by,

\({P_{syn}} = 3\frac{{{E_f}{V_t}}}{{{X_s}}}\sin \delta \)

Where Ef is the internally generated emf

Vt is the terminal voltage

XS is the synchronous reactance

δ is the torque angle

Calculation:

Given that,

\({E_f} = {V_t} = \frac{{6600}}{{\sqrt 3 }}V\)

XS = 1.65 Ω

Mechanical angle (θm) = 1°

Number of poles (P) = 12

Electrical angle, \({\theta _e} = \frac{{{\theta _m}}}{2} \times P = \frac{1}{2} \times 12 = 6^\circ = \frac{\pi }{{30}}rad\)

\(P = 3 \times \frac{{\frac{{6600}}{{\sqrt 3 }} \times \frac{{6600}}{{\sqrt 3 }}\; \times \;\cos 0^\circ }}{{1.65}}\; \times \;\frac{\pi }{{30}}\) 

= 2764.6 kW

= 921.53 kW per phase

Synchronising of Alternators Question 2:

A 3000 kVA, 3 – phase, star connected 6600 volt, 8-pole, 50 Hz alternator has a synchronous reactance of 20% and is running in parallel with infinite bus. The Synchronizing torque per mechanical degree of phase displacement at no load is ________ (in kN-m)

Answer (Detailed Solution Below) 13 - 14

Synchronising of Alternators Question 2 Detailed Solution

Per phase voltage, \({V_t} = \frac{{6600}}{{\sqrt 3 }} = 3810.5\;V\)

Per phase armature current,

\({I_a} = \frac{{\left( {3000} \right)\left( {{{10}^3}} \right)}}{{\sqrt 3 \left( {6600} \right)}} = 262.43\;A\)

Percentage reactance, \({X_s} = \frac{{{X_s}\;in\;ohms}}{{{V_t}/{I_a}}} \times 100\)

\(= \frac{{20}}{{100}} \times \frac{{3810.5}}{{262.43}} = 2.9\)

At no load, synchronizing power per mechanical degree,

\({P_s} = m\frac{{dp}}{{d\delta }} \cdot \frac{{\pi p}}{{360}} = \frac{{3\;{V_t}{E_f}}}{{{X_s}}}\cos \delta \cdot \frac{{\pi p}}{{360}}\)

\(= \frac{{3 \times {{\left( {3810} \right)}^2}}}{{2.90}} \times \frac{{\pi \left( 8 \right)}}{{360}} = 1048.36\;kW\)

Synchronizing torque,

\({T_s} = \frac{{60}}{{2\pi \times {N_s}}} \cdot {P_s}\)

\(= \frac{8}{{2\pi \left( {100} \right)}}\;\left( {1048.36 \times {{10}^3}} \right)\)

= 13, 348.13 N-m

Synchronising of Alternators Question 3:

A synchronous generator has its effective internal impedance Zs = 10 Ω and resistance ra = 1 Ω. Its generated voltage Ef and terminal voltage Vt are both 500 V. The maximum power output is___ (in kW)

Answer (Detailed Solution Below) 22 - 23

Synchronising of Alternators Question 3 Detailed Solution

Concept:

Maximum power output by the synchronous generator:

The output power delivered by the synchronous generator is given by

\({{\bf{P}}_{{\bf{g}}}} = \frac{{{\bf{EV}}}}{{{Z_s}}}\;{\bf{cos}}\left( {{\bf{θ }} - {\bf{δ }}} \right) - \frac{{{{\bf{V}}^2}}}{{{{\bf{Z}}_{\bf{s}}}}}\;{\bf{cos}}\;{\bf{θ }}\)  -------    (1)

Where

E is the excitation voltage line to line

V is the terminal voltage line to line

Zs is the synchronous impedance

θ is the internal angle and δ is the load angle

Condition for maximum power output:

For maximum power developed \(\frac{{{\bf{d}}{{\bf{P}}_{{\bf{g}}}}}}{{{\bf{dδ }}}} = 0\)

⇒ \(\frac{{{\bf{EV}}}}{{{Z_s}}}\;{\bf{sin}}\left( {{\bf{θ }} - {\bf{δ }}} \right) - 0 = 0\)

⇒ sin (θ - δ) = 0

 θ = δ 

⇒ Maximum power output of alternator is given by 

From equation (1)

⇒ \({{\bf{P}}_{{\bf{gmax}}}} = \frac{{{\bf{EV}}}}{{{Z_s}}}\ - \frac{{{{\bf{V}}^2}}}{{{{\bf{Z}}_{\bf{s}}}}}\;{\bf{cos}}\;{\bf{θ }}\)

Calculation:

Given that,

Zs = 10 Ω, ra = 1 Ω, Ef = Vt = 500 V

⇒ cos θ = ra / Zs =  1/10 = 0.1

The maximum power output is:

\({{\bf{P}}_{{\bf{gmax}}}} = \frac{{{\bf{500^2}}}}{{{10}}}\ - \frac{{{{\bf{500}}^2}}}{{{{10}}}}\times0.1\)  = 22.5 kW

Synchronising of Alternators Question 4:

.The variation of synchronising power for variation of power angle for a salient pole machine will be

  1. quesOptionImage562
  2. quesOptionImage563
  3. quesOptionImage564
  4. quesOptionImage565

Answer (Detailed Solution Below)

Option 3 : quesOptionImage564

Synchronising of Alternators Question 4 Detailed Solution

Concept:

  • Synchronizing Power is defined as the varying of the synchronous power P on varying in the load angle δ.
  • It is also called Stiffness of Coupling, Stability or Rigidity factor. It is represented as Psyn.
  • A synchronous machine, whether a generator or a motor, when synchronized to infinite Busbars has an inherent tendency to remain in Synchronism.


Power of salient power: 

\(P = \frac{{EV}}{{{X_d}}}sinδ + \frac{{{V^2}}}{2}\left( {\frac{1}{{{X_q}}} - \frac{1}{{{X_d}}}} \right)sin2δ \)

Where

δ = Power angle

Xd = Direct axis synchronous reactance

Xq = Quadrature axis synchronous reactance

Synchronizing power of salient pole machine:

\({P_{syn}} = \frac{{dP}}{{dδ }}\)

\(P_{syn} = \frac{{EV}}{{{X_d}}}cosδ + {V^2}\left( {\frac{1}{{{X_q}}} - \frac{1}{{{X_d}}}} \right)cos2δ \)

Explanation:

\(P_{syn} = \frac{{EV}}{{{X_d}}}cosδ + {V^2}\left( {\frac{1}{{{X_q}}} - \frac{1}{{{X_d}}}} \right)cos2δ \)

F11 Jai Prakash 21-1-2021 Swati D19

Synchronising of Alternators Question 5:

A 400 V, 3ϕ delta connected synchronous motor runs at rated voltage and with an excitation emf of 500 V. Its winding and iron losses are 1800 W and synchronous impedance per phase is (0.7 + 3j) Ω. Calculate the maximum shaft power output in kW

Answer (Detailed Solution Below) 132 - 145

Synchronising of Alternators Question 5 Detailed Solution

Zs = (0.7 + 3j) = 3.08 ∠76.87

Vt = 400 V, Ef = 500 V

\(Maximum\;output\;power = \frac{{{E_f}{V_t}}}{{{Z_s}}} - \frac{{E_f^2}}{{Z_s^2}} \times {r_a}\)

\( = \frac{{500 \times 400}}{{3.08}} - {\left( {\frac{{500}}{{3.08}}} \right)^2} \times 0.7 = 46487.60\;W\)

Shaft power = [3 × 46.49 – 1.8]kW = 137.66 kW

Synchronising of Alternators Question 6:

The maximum power delivered by 1500 kW, three-phase star-connected 4 kV, 48 pole 50 Hz synchronous generator, with the synchronous reactance of 4 Ω per phase and unity power factor is___(in MW)

Answer (Detailed Solution Below) 4 - 4.5

Synchronising of Alternators Question 6 Detailed Solution

\(\begin{array}{l} {V_{ph}} = \frac{{4000}}{{\sqrt 3 }} = 2309.4\;V\\ {I_L} = \frac{{1500}}{{\sqrt 3 \times 4000 \times 1}} = 216.5\;A\\ {E_{ph}} = \sqrt {{{\left( {V\cos \phi + {I_a}{R_a}} \right)}^2} + {{\left( {V\sin \phi + {I_a}{X_s}} \right)}^2}} \\ {E_{ph}} = \sqrt {{{\left( {2309.4 \times 1 + 0} \right)}^2} + {{\left( {0 + 216.5 \times 4} \right)}^2}} = 2466.5\;V\\ {E_L} = \sqrt 3 {E_{ph}} = 4272\;V\\ P = \frac{{{E_L}{V_L}}}{{{X_s}}}sin\delta \\ {P_{max}} = \frac{{{E_L}{V_L}}}{{{X_s}}} = \frac{{\left( {4272 \times 4000} \right)}}{4} = 4271.2\;kW =4.271\;MW\end{array}\)

Synchronising of Alternators Question 7:

A 500 kVA, 10 kV, 6 pole, 50 Hz alternator is having synchronous reactance drop of 30%. If armature resistance is negligible, what is the synchronizing power per phase per mechanical degree of displacement for full load at 0.8 lagging power factor?

  1. 34.31 kW

  2. 38.52 kW

  3. 24.81 kW

  4. 28.72 kW

Answer (Detailed Solution Below)

Option 1 :

34.31 kW

Synchronising of Alternators Question 7 Detailed Solution

Voltage per phase, \(V = \frac{{10,000}}{{\sqrt 3 }}\)

= 5773.5 V

Full load current, \(I = \frac{{500 \times 1000}}{{\sqrt 3 \times 10 \times 1000}}\)

= 28.87 A

I XS = 30% of V = 0.3 × 5773.5

= 1732.05 V

\({X_S} = \frac{{1732.05}}{{28.87}} = 60\ {\rm{\Omega}}\)

\(I = 28.87\angle 0^\circ\), then V = 5773.5(0.8 + j0.6)

V = 4618.8 + j3464.1 V

\({E_0} = V + I{X_S}\) (Ra is neglegible)

= 4618.8 + j3464.1 + (j 1732.05)

= 4618.8 + j 5196.15

= 6952.2 ∠ 48.36° 

Power angle \(\delta = 48.36^\circ - {\cos ^{ - 1}}\left( {0.8} \right)\)

= 48.36° - 36.87°

= 11.5°

1° of mechanical displacement \(= \frac{6}{2} \times 1^\circ\) Electrical displacement

= 3° of electrical displacement.

Synchronising power per phase, \({P_{SY}} = \frac{{EV}}{{{X_S}}}\cos \delta \sin \alpha\)

\(= \frac{{6952.2 \times 5773.5}}{{60}} \times \cos 11.5^\circ \sin 3^\circ\)

= 34308.6 W

= 34.31 kW

Get Free Access Now
Hot Links: teen patti gold teen patti master game teen patti gold download