Properties of Bridge Circuits MCQ Quiz in தமிழ் - Objective Question with Answer for Properties of Bridge Circuits - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Mar 17, 2025

பெறு Properties of Bridge Circuits பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Properties of Bridge Circuits MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Properties of Bridge Circuits MCQ Objective Questions

Top Properties of Bridge Circuits MCQ Objective Questions

Properties of Bridge Circuits Question 1:

In the AC bridge, shown in the figure R = 103 Ω and C = 10-7 F. If the bridge is balanced at a frequency ω0, the value of ω0 in rad/s is-

GATE EE Reported 98

Answer (Detailed Solution Below) 10000

Properties of Bridge Circuits Question 1 Detailed Solution

At balance condition,

ZZ4 = Z2 Z3

\(\Rightarrow R\left[ {R + \frac{1}{{j\omega c}}} \right] = 2R\;\left[ {\frac{{R\left( {\frac{1}{{j\omega c}}} \right)}}{{R + \frac{1}{{j\omega c}}}}} \right]\)

\(\Rightarrow R\left[ {R + \frac{1}{{j\omega c}}} \right] = 2R\;\left[ {\frac{R}{{1 + jR\omega c}}} \right]\)

\(\Rightarrow \left[ {R + \frac{1}{{j\omega c}}} \right]\left[ {1 + j\omega RC} \right] = 2R\)

\(\Rightarrow \left( {R + R} \right) + \frac{1}{{j\omega c}} + j\omega {R^2}c = 2R\)

\(\Rightarrow j\omega {R^2}C = \frac{{ - 1}}{{j\omega c}}\)

\(\Rightarrow {\omega ^2}{R^2}{C^2} = 1 \Rightarrow \omega = \frac{1}{{RC}} = \frac{1}{{{{10}^3} \times {{10}^{ - 7}}}} = 10000\;rad/s\)

Properties of Bridge Circuits Question 2:

For the bridge shown Z1 = 200 ∠20° Ω, Z2 = 150 ∠30° Ω  and Z3 = 300 ∠-30° Ω. What is the value of Z4 so that the bridge is balanced?

measurement D4

  1. 225 ∠20° Ω
  2. 225 ∠-20° Ω
  3. 100 ∠80° Ω
  4. 100 ∠-80° Ω

Answer (Detailed Solution Below)

Option 2 : 225 ∠-20° Ω

Properties of Bridge Circuits Question 2 Detailed Solution

At bridge balance condition,

Z1 Z4 = Z2 Z3

⇒ 200 ∠20° Z4 = 150 ∠30°    300 ∠-30°

⇒ Z4 = 225 ∠-20° Ω

Properties of Bridge Circuits Question 3:

The impedance of a basic ac bridge arms are ZAB = 300 Ω, ZBC = 150 Ω ∠60°, ZCD = 400 Ω/30° ZDA = unknown if ω = 1000 radian/s, the components of the unknown arms has the resistance 692.82 in

  1. Series with the capacitance of 2.5 μF
  2. Parallel with a capacitance of 2.5 μF
  3. Series with an inductor of 3.5 μF
  4. Parallel with an inductor of 3.5 μF

Answer (Detailed Solution Below)

Option 1 : Series with the capacitance of 2.5 μF

Properties of Bridge Circuits Question 3 Detailed Solution

Measurement 2 Shraddha images q4

For bridge balance:

ZAB × ZCD = ZBC × ZAD

300 × 400 ∠30° = ZAD × 150 ∠60°

800 ∠30° = ZAD ∠60°

ZAD = 692.82 – j 400

Capacitive reactance \({x_c} = \frac{1}{{wc}}\)

\(C = \frac{1}{{400 \times 1000}} = 2.5\mu F\)

Properties of Bridge Circuits Question 4:

In the AC bridge shown in figure R = 105 Ω and C = 10-8 F. If the bridge is balanced at a frequency ωo, the value of ω0 in rad/sec is _______.

ssc mts 1 44

Answer (Detailed Solution Below) 1000

Properties of Bridge Circuits Question 4 Detailed Solution

\(R \times \left( {R + \frac{1}{{j\omega C}}} \right) = 2R \times \frac{R}{{1 + j\omega RC}}\) 

\(\frac{{1 + j\omega RC}}{{j\omega RC}} = \frac{{2R}}{{1 + j\omega RC}}\)

(1 + jωRC)2 = jωR2C

1 + 2jωRC – ω2R2C2 = jωR2C

Equate real part

1 – ω2R2C2 = 0

\({\omega ^2} = \frac{1}{{{R^2}{C^2}}}\)

\(\omega = \frac{1}{{RC}}\)

Now put value of R and C

\(\omega = \frac{1}{{{{10}^6} \times {{10}^{ - 8}}}} = {10^3}rad/sec\)

Properties of Bridge Circuits Question 5:

The a.c. bridge in figure remains balance if z comprises of

Measurements 5.docx 8

  1. Resistance only
  2. Capacitance only
  3. Resistance and capacitance in parallel
  4. Resistance and inductor in series

Answer (Detailed Solution Below)

Option 3 : Resistance and capacitance in parallel

Properties of Bridge Circuits Question 5 Detailed Solution

At bridge balance condition,

\(\begin{array}{l} ({R_1})\left( {\frac{1}{{j\omega {C_1}}}} \right) = z\left( {\;{R_2} + \frac{1}{{j\omega {C_2}}}} \right)\\ z = \frac{{({R_1})\left( {\frac{1}{{j\omega {C_1}}}} \right)}}{{\left( {\;{R_2} + \frac{1}{{j\omega {C_2}}}} \right)}} \end{array}\)

It is equivalent to a resistor and a capacitor are connected in parallel.

Properties of Bridge Circuits Question 6:

Find the excitation frequency (in Hz) in the Ac Bridge shown in figure under balance condition. The circuit component values are given as

R1 = 100 kΩ,

R3 = R4 = 100 kΩ,

C1 = 2 C2 = 10 nF

Measurements 5.docx 7

Answer (Detailed Solution Below) 158 - 160

Properties of Bridge Circuits Question 6 Detailed Solution

under bridge balance condition,

\(\left[ {{R_1} + \frac{1}{{j\omega {c_1}}}} \right]{R_4} = {R_3}\left[ {\frac{{{R_2}\left( {\frac{1}{{j\omega {c_2}}}} \right)}}{{{R_2} + \frac{1}{{j\omega {c_2}}}}}} \right]\)

Given that, \({R_3} = {R_4}\)

\(\left[ {{R_1} + \frac{1}{{j\omega {c_1}}}} \right] = \left[ {\frac{{{R_2}\left( {\frac{1}{{j\omega {c_2}}}} \right)}}{{{R_2} + \frac{1}{{j\omega {c_2}}}}}} \right]\)

\(\left[ {{R_1} + \frac{1}{{j\omega {c_1}}}} \right] = \left[ {\frac{{{R_2}}}{{{R_2}j\omega {c_2} + 1}}} \right]\)

\(\begin{array}{l} \frac{{\left( {{R_{1\;}}j\omega {c_1} + 1} \right)}}{{j\omega {c_1}}} = \frac{{{R_2}}}{{j{R_2}\omega {c_2} + 1}}\\ \left( {1 + \;j\omega {R_1}{C_1}} \right)\left( {1 + \;j\omega {R_2}{C_2}} \right) = j\omega {C_1}{R_2}\\ 1 + \;j\omega {R_1}{C_1} + \;j\omega {R_2}{C_2} - {\omega ^2}{R_1}{R_2}{C_1}{C_2} = \;j\omega {C_1}{R_2} \end{array}\)

By comparing real parts on both sides,

\(\begin{array}{l} 1 - {\omega ^2}{R_1}{R_2}{C_1}{C_2} = 0\\ \omega = \frac{1}{{\sqrt {{R_1}{R_2}{C_1}{C_2}} }} \end{array}\)

By comparing imaginary parts on both sides,

\(\begin{array}{l} {R_1}{C_1} + {R_2}{C_2} = {C_1}{R_2}\\ {R_2} = \left( {{C_1} - {C_2}} \right) = {R_1}{C_1}\\ {R_2} = \frac{{{R_1}{C_1}}}{{\left( {{C_1} - {C_2}} \right)}} = \frac{{100 \times {{10}^3} \times 10 \times {{10}^{ - 9}}}}{{\left( {10 \times {{10}^{ - 9}} - 5 \times {{10}^{ - 9}}} \right)}}\\ = 200\:k\Omega \;\\ f = \frac{1}{{2 \pi \sqrt {{R_1}{R_2}{C_1}{C_2}} }}\\ =\frac{1}{{2\pi \sqrt {100 \times {{10}^3} \times 200 \times {{10}^3} \times 10 \times {{10}^{ - 9}} \times 5 \times {{10}^{ - 9}}} }} \end{array}\)

= 159.15 Hz

Properties of Bridge Circuits Question 7:

The bridge circuit in figure is balanced. The magnitude of current I is

Measurements 5.docx 3

  1. 2 mA
  2. 4 mA
  3. 5 mA
  4. 6 mA

Answer (Detailed Solution Below)

Option 4 : 6 mA

Properties of Bridge Circuits Question 7 Detailed Solution

Measurements 5.docx 4

At bridge balance condition,

\(\begin{array}{l} {V_A} = {V_B}\\ {V_A} = {V_S}\left( {\frac{4}{{1 + 4}}} \right) = \frac{{4{V_S}}}{5}\\ {V_B} = {V_S} - 2\\ \frac{{4{V_S}}}{5} = {V_S} - 2\\ 4{V_S} = 5{V_S} - 10\\ {V_S} = 10V\\ I = \frac{{{V_S}}}{{5 \times {{10}^3}}} + \frac{{{V_S} - 2}}{{2 \times {{10}^3}}}\\ I = \frac{{10}}{{5 \times {{10}^3}}} + \frac{8}{{2 \times {{10}^3}}}\\ I = 6\;mA \end{array}\)

Properties of Bridge Circuits Question 8:

The impedances of a basic ac bridge arms are

ZAB = 250 Ω

ZBC = 100 ∠60° Ω

ZCD = 400 ∠30° Ω

ZDA = Unknown

If ω = 1000 radian/sec, the components of the unknown arm has the resistance 500√3 Ω is

  1. Series with a capacitor of 2 μF
  2. Parallel with a capacitor 2 μF
  3. Series with an inductor 2 μH
  4. Parallel with an inductor 2 μH

Answer (Detailed Solution Below)

Option 1 : Series with a capacitor of 2 μF

Properties of Bridge Circuits Question 8 Detailed Solution

Measurements 5.docx 1

At bridge balance condition,

\(\frac{{{Z_{AB}}}}{{{Z_{DA}}}} = \frac{{{Z_{BC}}}}{{{Z_{CD}}}}\)

\(\frac{{250}}{{{Z_{DA}}}} = \frac{{100\angle 60}}{{400\angle 30}}\)

\({Z_{DA}} = \frac{{250 \times 400\angle 30}}{{100\angle 60}}\)

\({Z_{DA}} = 1000\angle - 30\)

\(= \left( {1000 \times \frac{{\sqrt 3 }}{2} - j\;500} \right){\rm{\Omega }}\)

\({Z_{DA}} = \left( {500 \times \sqrt 3 - j\;500} \right)\)

Negative sign of reactance value indicates that, it is capacitive reactance.

\({X_c} = 500\)

\(\frac{1}{{\omega C}} = 500\)

\(C = \frac{1}{{\left( {500} \right)\left( {1000} \right)}} = 2 \times {10^{ - 6}}F = 2\mu F\)

Hence ZDA is a resistance of 500√3 Ω in series with a capacitor of 2 μF

Properties of Bridge Circuits Question 9:

Gate EE Measurements Questions Images Q8

If the given circuit is a balanced bridge, what should be in place of ‘X’ ?

  1. An inductor with resistance.
  2. A capacitor with a resistance
  3. An inductor and a capacitor in parallel
  4. None of these

Answer (Detailed Solution Below)

Option 2 : A capacitor with a resistance

Properties of Bridge Circuits Question 9 Detailed Solution

For balanced bridge, Z1Z4 = Z2Z3

\(X{R_4} = \left( {{R_2} - \frac{J}{{\omega {C_2}}}} \right){R_3}\) 

\(X = \frac{{{R_2}{R_3}}}{{{R_4}}} - J\frac{1}{{\frac{{\omega {C_2}{R_4}}}{{{R_3}}}}}\) 

X = resistance and capacitance in series.

Properties of Bridge Circuits Question 10:

Gate EE Measurements Questions Images Q6

For the given circuit, if the current through branch BD is zero what is the value of battery current I in mA upto two decimal places?

Answer (Detailed Solution Below) 42.8 - 43.0

Properties of Bridge Circuits Question 10 Detailed Solution

If current through BD is zero, then the bridge is balanced.

For balanced bridge, R × 75 = 150 × 100

R = 200 Ω

Equivalent resistance of the circuit, Req = 350 || 175

= 116.67 Ω

\(I = \frac{5}{{116.67}} = 0.04286A = 42.86mA\)

Get Free Access Now
Hot Links: teen patti gold apk teen patti win teen patti gold new version 2024 teen patti dhani