Numerical elements MCQ Quiz in தமிழ் - Objective Question with Answer for Numerical elements - இலவச PDF ஐப் பதிவிறக்கவும்
Last updated on Mar 17, 2025
Latest Numerical elements MCQ Objective Questions
Top Numerical elements MCQ Objective Questions
Numerical elements Question 1:
Find the determinant of the matrix \(\begin{vmatrix} 2 & 7 & 37\\ 3& 6 & 33\\ 4 & 5 & 29 \end{vmatrix}\)
Answer (Detailed Solution Below)
Numerical elements Question 1 Detailed Solution
Concept:
Properties of Determinant of a Matrix:
- If each entry in any row or column of a determinant is 0, then the value of the determinant is zero.
- For any square matrix say A, |A| = |AT|.
- If we interchange any two rows (columns) of a matrix, the determinant is multiplied by -1.
- If any two rows (columns) of a matrix are same then the value of the determinant is zero.
Calculation:
\(\begin{vmatrix} 2 & 7 & 37\\ 3& 6 & 33\\ 4 & 5 & 29 \end{vmatrix}\)
Apply C2 → 5C2 + C1, we get
= \(\begin{vmatrix} 2 & 37 & 37\\ 3& 33 & 33\\ 4 & 29 & 29 \end{vmatrix}\)
As we can see that the second and the third column of the given matrix are equal.
We know that, if any two rows (columns) of a matrix are same then the value of the determinant is zero.
∴ \(\begin{vmatrix} 2 & 7 & 37\\ 3& 6 & 33\\ 4 & 5 & 29 \end{vmatrix}\) = 0
Numerical elements Question 2:
If \(P=\begin{bmatrix} 1 & \alpha & 3\ 1 & 3 & 3\ 2 & 4 & 4 \end{bmatrix}\) is the adjoint of a \(3\times 3\) matrix \(A\) and \(|A| =4\), then \(\alpha\) is equal to:
Answer (Detailed Solution Below)
Numerical elements Question 2 Detailed Solution
\( P=\begin{bmatrix} 1 & \alpha & 3\ 1 & 3 & 3\ 2 & 4 & 4 \end{bmatrix} \)
For 3X3 matrix,
\( |Adj A|=|A|^{2} \)
\( |Adj A|=16 \)
\( 1(12-12)-\alpha(4-6)+3(4-6)=16 \)
\( 2\alpha-6=16 \)
\( 2\alpha=22 \)
\( \alpha=11 \)
Numerical elements Question 3:
If \(\rm p=\begin{bmatrix}1&\alpha&3\\\ 1&3&3\\\ 2&4&4\end{bmatrix}\) is the adjoint of the 3 × 3 matrix A and det A = 4, then a is equal to
Answer (Detailed Solution Below)
Numerical elements Question 3 Detailed Solution
Calculation
|p| = 2α - 6 = (det A)² = 16
⇒ α = 11
Hence option 2 is correct
Numerical elements Question 4:
Let αβ ≠ 0 and A = \(\rm \begin{bmatrix}\beta&\alpha&3\\ \alpha&\alpha&\beta\\\ -\beta &\alpha&2\alpha\end{bmatrix}\ If \ B=\rm \begin{bmatrix}3\alpha&-9&3\alpha\\\ -\alpha&7&-2\alpha\\\ -2\alpha&5&-2\beta\end{bmatrix}\) is the matrix of cofactors of the elements of A, then det(AB) is equal to :
Answer (Detailed Solution Below)
Numerical elements Question 4 Detailed Solution
Concept:
The co-factor of Aij = (– 1)i+jMij, where Mij is the minor obtained by removing the ith row and jth column.
Calculation:
Given, A = \(\rm \begin{bmatrix}\beta&\alpha&3\\ \alpha&\alpha&\beta\\\ -\beta &\alpha&2\alpha\end{bmatrix}\) and B = \(\rm\begin{bmatrix}3\alpha&-9&3\alpha\\\ -\alpha&7&-2\alpha\\\ -2\alpha&5&-2\beta\end{bmatrix}\)
Now, equating co-factor fo A21 = (2α2 – 3α) = α
⇒ α = 2, 0
⇒ α = 2 [∵ α ≠ 0]
Now, 2α2 – αβ = 3α
⇒ 8 – 2β = 6
⇒ β = 1
∴ |AB| = |A cof (A)| = |A|3
∴ |A| = \(\left|\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 2 & 1 \\ -1 & 2 & 4 \end{array}\right|\) = 6 - 2(9) + 3(6) = 6
⇒ |A|3 = 63 = 216
∴ The value of det(AB) is equal to 216.
The correct answer is Option 4.
Numerical elements Question 5:
Find the value of the determinant: \(\begin{vmatrix}5^2&5^3&5^4\\5^3&5^4&5^5\\5^5&5^6&5^7\end{vmatrix}\)
Answer (Detailed Solution Below)
Numerical elements Question 5 Detailed Solution
Concept:
Determinants:
- A linear combination of the rows/columns does not affect the value of the determinant.
- If two rows/columns of a given matrix are interchanged, then the value of the determinant gets multiplied by - 1.
- If a row/column of a given matrix is multiplied by a scalar k, then the value of the determinant is also multiplied by k.
Calculation:
Let D = \(\begin{vmatrix}5^2&5^3&5^4\\5^3&5^4&5^5\\5^5&5^6&5^7\end{vmatrix}\).
Dividing R1 by scalar 52 and R2 by 53, we get:
⇒ D = \((5^2)(5^3)\begin{vmatrix}1&5&5^2\\1&5&5^2\\5^5&5^6&5^7\end{vmatrix}\)
Using R1 → R1 - R2, we get:
⇒ D = \((5^2)(5^3)\begin{vmatrix}0&0&0\\1&5&5^2\\5^5&5^6&5^7\end{vmatrix}\)
Expanding along R1, we get:
⇒ D = 0.