Location of Roots MCQ Quiz in தமிழ் - Objective Question with Answer for Location of Roots - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Mar 16, 2025

பெறு Location of Roots பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Location of Roots MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Location of Roots MCQ Objective Questions

Top Location of Roots MCQ Objective Questions

Location of Roots Question 1:

If \( \lambda \epsilon R \) is such that the sum of the cubes of the roots of the equation, \( x^{2} + (2 - \lambda) x + (10 - \lambda) = 0 \) is minimum, then the magnitude of the difference of the roots of this equation is

  1. \( 20 \)
  2. \( 2\sqrt {5} \)
  3. \( 2\sqrt {7} \)
  4. \( 4\sqrt {2} \)

Answer (Detailed Solution Below)

Option 2 : \( 2\sqrt {5} \)

Location of Roots Question 1 Detailed Solution

By quadratic formula, the roots of this equation are:

\( \alpha, \beta = \dfrac{\lambda - 2 \pm \sqrt{4-4\lambda + \lambda^2 - 40 + 4\lambda}}{2} = \dfrac{\lambda - 2 \pm \sqrt{\lambda^2 - 36}}{2} \).

The magnitude of the difference of the roots is clearly \( |\sqrt{\lambda^2-36}| \).

We have, \( \alpha^3 + \beta^3 = \dfrac{(\lambda-2)^3}{4} + \dfrac{3(\lambda-2)(\lambda^2 - 36)}{4} = \dfrac{(\lambda-2)(4\lambda^2 - 4\lambda - 104)}{4} = (\lambda-2)(\lambda^2-\lambda-26) \).

This function attains its minimum value at \( \lambda = 4 \).

Thus, the magnitude of the difference of the roots is clearly \( |i\sqrt{20}|=2\sqrt{5} \).

So the correct answer is option B.

Location of Roots Question 2:

The number of real roots of the equation \(5+\left| { 2 }^{ x }-1 \right| ={ 2 }^{ x }\left( { 2 }^{ x }-2 \right) \) is:

  1. \(2\)
  2. \(3\)
  3. \(4\)
  4. \(1\)

Answer (Detailed Solution Below)

Option 4 : \(1\)

Location of Roots Question 2 Detailed Solution

Let \(2^{x}=t\) and \(t\) is always \(+ve\)

\(g(t)=5+\left| t-1 \right|\)

\(f(t)={ t }^{ 2 }-2t\)

From the graph

\(g(t)\) and \(f(t)\) intersect at two points, but one value of \(t\) is negative, and only one value of \(t\) is positive.

So, number of real roots is \(1\)
qImage671b41fa0050466de7544bef

Location of Roots Question 3:

Let \(f(x)=a_5 x^5 + a_4 x^4 + a_3 x^3+ a_2 x^2+a_1 x\), where \(a_i's\) are real and \(f(x)=0\) has a positive root \(\alpha_0\). Then

  1. \(f'(x)=0\) has a root \(\alpha_1\) such that \(0<\alpha_1<\alpha_0\)
  2. \(f'(x)=0\) has at least one real root
  3. \(f''(x)=0\) has at least one real root
  4. All of the above

Answer (Detailed Solution Below)

Option :

Location of Roots Question 3 Detailed Solution

From the given equation we get

\(f(0)=0\)

Hence

\(f(x)\) has a real root \(\alpha_{0}>0\).

Now \(f(x)\) is continuous on \([0,\alpha_{0}]\) and differentiable on \((0,\alpha_{0})\).

Hence there exists a \(\alpha_{1}\epsilon[0,\alpha_{0}]\) such that

\(f'(\alpha_{1})=0\) ...(Rolle's Theorem).

Consider \(f'(x)\).

It is continuous on \([0,\alpha_{1}]\) and differentiable on \((0,\alpha_{1})\).

Hence there exists a \(\alpha_{2}\epsilon[0,\alpha_{2}]\) such that

\(f'(\alpha_{2})=0\) ...(Rolle's Theorem).

And this can be repeated till \(f^{n}=constant\).

Hence all of the above is true.

Location of Roots Question 4:

Find all those roots of the equation \(z^{12} - 56z^6 - 512 = 0\) whose imaginary part is positive.

  1. \(2, 2 \left ( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right ), 2 \left ( \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right ), - 2, 2^{2/3} \left ( \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right ), 2^{2/3} \left ( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right ), 2^{2/3} \left ( \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right )\)
  2. \(2, 2 \left ( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right ), 2 \left ( \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right ), - 2, 2^{1/3} \left ( \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right ), 2^{1/3} \left ( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right ), 2^{1/3} \left ( \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right )\)
  3. \(2, 2 \left ( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right ), 2 \left ( \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right ), - 2, 2^{1/3} \left ( -\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right ), 2^{1/3} \left ( -\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right ), 2^{1/3} \left ( -\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right )\)
  4. \(2, 2 \left ( -\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right ), 2 \left ( -\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right ), - 2, 2^{2/3} \left ( \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right ), 2^{2/3} \left ( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right ), 2^{2/3} \left ( \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right )\)

Answer (Detailed Solution Below)

Option 2 : \(2, 2 \left ( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right ), 2 \left ( \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right ), - 2, 2^{1/3} \left ( \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right ), 2^{1/3} \left ( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right ), 2^{1/3} \left ( \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right )\)

Location of Roots Question 4 Detailed Solution

\((z^{6}-28)^{2}-784-512=0\)

\((z^{6}-28)^{2}=1296\)

\(z^{6}-28=\pm36\)

\(z^{6}=64\) and \(z^{6}=-8\)

\(z^{3}=\pm8\)

\(z=2\) and \(z=-2\) ... (i)

\(z^{6}=2^{3}.e^{i(2k-1)\pi}\)

\(z=2^{\frac{1}{2}}(e^{i\frac{(2k-1)\pi}{6}})\) where \(k=1,2,3..6\)

Location of Roots Question 5:

If \(2\) and \(3\) are the roots of cubic equation \(2x^3+mx^2-13x+n=0\), then the values of \(m\) and \(n\) are:

  1. \(-5,-30\)
  2. \(-5,30\)
  3. \(5,30\)
  4. None of these

Answer (Detailed Solution Below)

Option 2 : \(-5,30\)

Location of Roots Question 5 Detailed Solution

if \(\alpha, \beta, \gamma\) are roots of a cubic equation then,

cubic equation is written as;

\(x^3-(\alpha+\beta+\gamma)x^2+(\alpha\beta+\beta\gamma+\alpha\gamma)x-\alpha\beta\gamma=0\)

Given, \(2\) and \(3\) are roots of the equation \(2x^3+mx^2-13x+n=0\)

Let \(\alpha\) be the third root.

\(5+\alpha =-\frac{m}{2}\) ....(1)

Also, \(6+2\alpha+3\alpha=-\frac{13}{2}\)

\(\Rightarrow \alpha=-\frac{5}{2}\)

Also, \(6\alpha=-\frac{n}{2}\)

\(\Rightarrow n=30\)

Now, by (1), \(m=-5\)

Location of Roots Question 6:

If \(1\) lies between the roots of the equation \(3x^{2}-3\sin \alpha x-2\cos ^{2}\alpha = 0\), then \(\alpha\) lies in the interval

  1. \(\left ( 0,\frac{\pi }{2} \right )\)
  2. \(\left ( \frac{\pi }{12},\frac{\pi }{2} \right )\)
  3. \(\left ( \frac{\pi }{6},\frac{5\pi }{6} \right )\)
  4. \(\left ( \frac{\pi }{6},\frac{\pi }{2} \right )\cup \left ( \frac{\pi }{2},\frac{5\pi }{6} \right )\)

Answer (Detailed Solution Below)

Option 4 : \(\left ( \frac{\pi }{6},\frac{\pi }{2} \right )\cup \left ( \frac{\pi }{2},\frac{5\pi }{6} \right )\)

Location of Roots Question 6 Detailed Solution

If a,b are the roots, then

\(f(x)=3(x-a)(x-b)\)

\(f(1)=3(1-a)(1-b)=\) -ve as \(a < 1 < b\)

on \(f(1)=3-3 \sin \alpha -2(1-\sin^{2}\alpha ) < 0\)

or \(2\sin^{2}\alpha -3\sin\alpha +1 < 0\)

\((2 \sin \alpha -1)(\sin \alpha -1) < 0\)

\(2(\sin \alpha -\dfrac{1}{2})(\sin \alpha -1) < 0\)

\(\therefore \dfrac{1}{2} < \sin \alpha < 1\). Now \(\sin 30^{\circ}= \sin 150^{\circ}=\dfrac{1}{2}\)

\(\therefore \alpha\) lies between \(\dfrac{\pi }{6} \text{ to } \dfrac{5\pi }{6}\) excluding \(\dfrac{\pi }{2}\) as \(\sin\alpha\) is not equal to 1 and hence (d) is correct.

Location of Roots Question 7:

The equation \(\|x+2\|=-2\) has.

  1. Only one solution
  2. Infinite number of solutions
  3. No solution
  4. None of these

Answer (Detailed Solution Below)

Option 3 : No solution

Location of Roots Question 7 Detailed Solution

\(\|x+2\|=-2\)

\(y=\|x+2\|\,,y=-2\)

From the figure, No. of intersection points\(=0\)

\(\therefore\) No. of solutions\(=0\)


qImage671b28d48b6f3884ed33775f

Location of Roots Question 8:

The number of solutions of the equation \(\left | x+1 \right |^{\log _{x+1}\left ( 3+2x-x^{2} \right )}= \left ( x-3 \right )\left | x \right |\) is/are

  1. only one
  2. two
  3. no solution
  4. more than two

Answer (Detailed Solution Below)

Option 3 : no solution

Location of Roots Question 8 Detailed Solution

By the definition of \(\log_a{b}; a,b > 0\)

Thus, \(x+1> 0\)

\(\therefore \left | x+1 \right |= x+1\) ...(1)

Also, \(3+2x-x^{2}> 0\)

\(\Rightarrow x^{2}-2x-3< 0\)

or \(\left ( x-3 \right )\left ( x+1 \right )< 0\)

\(\therefore -1< x< 3\)

or \(-1< x< 0\) and \(0< x< 3\) ...(2)

Hence, the given equation by (1) reduces to

\(3+2x-x^{2}= \left ( x-3 \right )\left | x \right |\)

[\(\because { a }^{ \log _{ a }{ x } }=x\)]

Now, \(\left | x \right |= -x\) if \(x<0\), \(\left | x \right |= x\) when \(x>0\)

When \(-1< x< 0\)

then \(3+2x-x^{2}= \left ( x-3 \right )\left ( -x \right )\)

or \(3+2x-x^{2}= -x^{2}+3x\)

\(\therefore x= 3 \notin \left [ -1,0 \right ]\)

When \(0< x< 3\), then by (2)

\(3+2x-x^{2}= \left ( x-3 \right )x= x^{2}-3x\)

or \(2x^{2}-5x-3= 0 \therefore x= -\frac{1}{2}, 3\)

These values do not lie in \(0< x< 3\).

Hence, the equation has no solution.

Ans: C

Location of Roots Question 9:

Determine the nature of the roots of the equation 2x2 + 5x + 5 = 0

  1. imaginary and distinct 
  2. real and equal
  3. imaginary and equal
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : imaginary and distinct 

Location of Roots Question 9 Detailed Solution

Given:

The equation 2x2 + 5x + 5 = 0

Concept Used:

The quadratic equation Ax2 + Bx + C = 0 

If roots are imaginary, B2 - 4ac < 0 

Calculation:

Comparing of given equation

Now, A = 2, B = 5 & C = 5 

⇒ (5)2 - 4 × 5 × 5 < 0

⇒ 25 - 100 < 0 

⇒ -75 < 0 

∴ The roots are imaginary and distinct. 

Location of Roots Question 10:

The integral value of a, for which the equation,

(x2 + x + 2)2 - (a - 3)(x2 + x + 2)(x2 + x + 1) + (a - 4)(x2 + x + 1)2 = 0

has real roots, is _______.

Answer (Detailed Solution Below) 6

Location of Roots Question 10 Detailed Solution

Explanation:

(x2 + x + 2)2 - (a - 3)(x2 + x + 2)(x2 + x + 1) + (a - 4)(x2 + x + 1)2 = 0

Dividing the equation by (x2 + x + 1)2  and we get

⇒ \(\left ( \frac{x^{2} + x + 2}{x^{2}+x+1} \right )^{2} \) - (a - 3 )\(\left ( \frac{x^{2} + x + 2}{x^{2}+x+1} \right ) \) + (a - 4) = 0 

Let \(\left ( \frac{x^{2} + x + 2}{x^{2}+x+1} \right ) \) = p   (p >1) , the equation becomes -

p2 - (a - 3)p + (a - 4) = 0

⇒ p2 - (a - 4)p + p + (a - 4) = 0

⇒ (p - 1)(p - a + 4) = 0

⇒ p = 1 ( ignore it because p > 1) and p = a - 4

So  \(\left ( \frac{x^{2} + x + 2}{x^{2}+x+1} \right ) \) = a - 4

⇒ (a -4)(x2 + x + 1) = x2 + x + 2

⇒ ax2 + ax + a - 4x2 - 4x - 4 = x2 + x + 2

⇒ (a -5 )x+ (a - 5)x + (a - 6) = 0    ---- (1)

For Real Roots,

D ≥ 0 

⇒ b2 - 4ac ≥ 0

⇒ (a - 5)2 - 4(a - 5)(a - 6) ≥ 0

⇒ (a -5)[a - 5 - 4(a - 6)] ≥ 0

⇒ (a - 5)( - 3a + 19) ≥ 0

⇒ - (a - 5)(3a - 19) ≥ 0

⇒ (a - 5)(3a - 19) ≤ 0     ( on multiplying or dividing the inequality by negative quantity then inequality sign changes )

With the help of a wavy curve, we get 

⇒ 5 ≤ a ≤ \(\frac{19}{3} \)   ( but we ignore a = 5 because at a = 5 equation (1) does not remain a quadratic equation)

⇒ 5 < a ≤ \(\frac{19}{3} \)

∴ The integral value of a is 6.

The answer is 6.

Get Free Access Now
Hot Links: all teen patti game teen patti club teen patti mastar teen patti classic