Properties of Discrete Fourier Transform MCQ Quiz in मराठी - Objective Question with Answer for Properties of Discrete Fourier Transform - मोफत PDF डाउनलोड करा
Last updated on Mar 21, 2025
Latest Properties of Discrete Fourier Transform MCQ Objective Questions
Top Properties of Discrete Fourier Transform MCQ Objective Questions
Properties of Discrete Fourier Transform Question 1:
\(\rm x[n]\) and \(\rm X[k]\) are \(\rm DFT\) pairs where \(\rm X[k] = DFT [x[n]]\). The period is \(\rm N\). Then \(\rm X[N-k]\) is equal to
Answer (Detailed Solution Below)
\(\rm X^*[k]\)
Properties of Discrete Fourier Transform Question 1 Detailed Solution
By definition
\(\rm \begin{array}{l} X\left[ k \right] = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{ - jk\frac{{2\pi n}}{N}}}\\ \rm \Rightarrow X\left[ {N - k} \right] = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right].{e^{ - j\frac{{\left( {N - k} \right)2\pi n}}{N}}}\\ \rm = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{jk\frac{{2\pi n}}{N}}}.{e^{ - j2\pi n}}\\ \rm = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{\frac{{jk2\pi n}}{N}}}\\ \rm \Rightarrow X\left[ {N - k} \right] = {\left( {\mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right].{e^{ - jk\frac{{2\pi n}}{N}}}} \right)^*} = {X^*}\left[ k \right] \end{array}\)
Properties of Discrete Fourier Transform Question 2:
\(\rm x\left[ n \right] = \left\{ { - 1,2, - 3,2, - 1} \right\}\)Then the value of \(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega \) ____.
Answer (Detailed Solution Below) 358 - 385.5
Properties of Discrete Fourier Transform Question 2 Detailed Solution
\(\rm x[n]\) is discrete and aperiodic \(\rm \Rightarrow X\left( {{e^{j\omega }}} \right)\)is periodic and continuous.
\(\rm X\left( {{e^{j\omega }}} \right)\)is periodic with \(\rm 2π\).
Thus \(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = 3\left[ {\mathop \smallint \limits_0^{2\pi } {{\left| {X\left( {{e^{j\omega }}} \right)} \right|}^2}d\omega } \right]\)
Now from Parseval’s theorem.
\(\rm \frac{1}{{2\pi }}\mathop \smallint \limits_0^{2\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = \mathop \sum \limits_{n = - \infty }^\infty {\left| {x\left[ n \right]} \right|^2}\)
\(\rm \Rightarrow \mathop \smallint \limits_0^{2\pi } {\left| {X\left({e^{j\omega }}\right)} \right|^2}d\omega = 2\pi \mathop \sum \limits_{n = - \infty }^\infty {\left| {x\left[ n \right]} \right|^2}\)
\(\rm = 2\pi \left[ {1 + 4 + 9 + 4 + 1} \right]\)
\(\rm = 2\pi .19\)
Now,
\(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = 3\left[ {2\pi .19} \right] = 358.14\)