Properties of Discrete Fourier Transform MCQ Quiz in मराठी - Objective Question with Answer for Properties of Discrete Fourier Transform - मोफत PDF डाउनलोड करा

Last updated on Mar 21, 2025

पाईये Properties of Discrete Fourier Transform उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Properties of Discrete Fourier Transform एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Properties of Discrete Fourier Transform MCQ Objective Questions

Top Properties of Discrete Fourier Transform MCQ Objective Questions

Properties of Discrete Fourier Transform Question 1:

\(\rm x[n]\) and \(\rm X[k]\) are \(\rm DFT\) pairs where \(\rm X[k] = DFT [x[n]]\). The period is \(\rm N\). Then \(\rm X[N-k]\) is equal to

  1. \(\rm X[-k]\)

  2. \(\rm X^*[-k]\)

  3. \(\rm X^*[N-k]\)

  4. \(\rm X^*[k]\)

Answer (Detailed Solution Below)

Option 4 :

\(\rm X^*[k]\)

Properties of Discrete Fourier Transform Question 1 Detailed Solution

By definition

\(\rm \begin{array}{l} X\left[ k \right] = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{ - jk\frac{{2\pi n}}{N}}}\\ \rm \Rightarrow X\left[ {N - k} \right] = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right].{e^{ - j\frac{{\left( {N - k} \right)2\pi n}}{N}}}\\ \rm = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{jk\frac{{2\pi n}}{N}}}.{e^{ - j2\pi n}}\\ \rm = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{\frac{{jk2\pi n}}{N}}}\\ \rm \Rightarrow X\left[ {N - k} \right] = {\left( {\mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right].{e^{ - jk\frac{{2\pi n}}{N}}}} \right)^*} = {X^*}\left[ k \right] \end{array}\)

Properties of Discrete Fourier Transform Question 2:

\(\rm x\left[ n \right] = \left\{ { - 1,2, - 3,2, - 1} \right\}\)Then the value of \(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega \) ____.

Answer (Detailed Solution Below) 358 - 385.5

Properties of Discrete Fourier Transform Question 2 Detailed Solution

\(\rm x[n]\)  is discrete and aperiodic \(\rm \Rightarrow X\left( {{e^{j\omega }}} \right)\)is periodic and continuous.

\(\rm X\left( {{e^{j\omega }}} \right)\)is periodic with \(\rm 2π\).

Thus \(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = 3\left[ {\mathop \smallint \limits_0^{2\pi } {{\left| {X\left( {{e^{j\omega }}} \right)} \right|}^2}d\omega } \right]\)

Now from Parseval’s theorem.

\(\rm \frac{1}{{2\pi }}\mathop \smallint \limits_0^{2\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = \mathop \sum \limits_{n = - \infty }^\infty {\left| {x\left[ n \right]} \right|^2}\)

\(\rm \Rightarrow \mathop \smallint \limits_0^{2\pi } {\left| {X\left({e^{j\omega }}\right)} \right|^2}d\omega = 2\pi \mathop \sum \limits_{n = - \infty }^\infty {\left| {x\left[ n \right]} \right|^2}\)

\(\rm = 2\pi \left[ {1 + 4 + 9 + 4 + 1} \right]\)

\(\rm = 2\pi .19\)

Now,

\(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = 3\left[ {2\pi .19} \right] = 358.14\)

Get Free Access Now
Hot Links: teen patti 51 bonus teen patti gold teen patti master real cash