Locus MCQ Quiz in मराठी - Objective Question with Answer for Locus - मोफत PDF डाउनलोड करा

Last updated on Mar 16, 2025

पाईये Locus उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Locus एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Locus MCQ Objective Questions

Top Locus MCQ Objective Questions

Locus Question 1:

If the equation of the locus of a point equidistant from the point \((a_1, b_1)\) and \((a_2, b_2)\) is \((a_1 - a_2)x + (b_1 - b_2) y + c + 0\), then the value of \(c\) is

  1. \(a_1^2 - a_2^2 + b_1^2 - b_2^2\)
  2. \(\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}\)
  3. \(\dfrac{1}{2} (a_1^2 + a_2^2 + b_1^2 + b_2^2)\)
  4. \(\dfrac{1}{2} (a_2^2 + b_2^2 - a_1^2 - b_1^2)\)

Answer (Detailed Solution Below)

Option 4 : \(\dfrac{1}{2} (a_2^2 + b_2^2 - a_1^2 - b_1^2)\)

Locus Question 1 Detailed Solution

Let \((h, k)\) be the point on the locus.

Then by the given conditions,

\((h-a_1)^2 + (k-b_1)^2 = (h-a_2)^2 + (k-b_2)^2\)

\(\Rightarrow 2 h (a_1 - a_2)+2k(b_1 - b_2) + a_2^2 -a_{1}^{2}+ b_2^2 - b_1^2 =0\)

\(\Rightarrow h (a_1 -a_2) + k (b_1 -b_2) + \dfrac{1}{2} (a_2^2 +b_2^2 - a_1^2 - b_1^2)=0\)

Also, since \((h, k)\) lies on the given locus, therefore

\((a_1 - a_2)x + (b_1 - b_2)y +c = 0\)

Comparing Eqs. (i) and (ii), we get

\(c = \dfrac{1}{2} (a_2^2 + b_2^2 -a_1^2 - b_1^2)\)

Locus Question 2:

The locus of the mid-point of the portion intercepted between the axes by the line \(x \, \cos \, \alpha + y \, \sin \, \alpha = p\)

  1. \(x^2 + y^2 = 4p^2\)
  2. \(\dfrac{1}{x^2} + \dfrac{1}{y^2} = \dfrac{4}{p^2}\)
  3. \(x^2 + y^2 = \dfrac{4}{p^2}\)
  4. \(\dfrac{1}{x^2} + \dfrac{1}{y^2} = \dfrac{2}{p^2}\)

Answer (Detailed Solution Below)

Option 2 : \(\dfrac{1}{x^2} + \dfrac{1}{y^2} = \dfrac{4}{p^2}\)

Locus Question 2 Detailed Solution

\(x \cos \alpha + y \sin \alpha = P\)

Let \(h = \dfrac{P}{2 \cos \alpha}\), \(k = \dfrac{P}{2 \sin \alpha}\)

\(\cos \alpha = \dfrac{P}{2h}\), \(\sin \alpha = \dfrac{P}{2k}\)

\(\cos^2 \alpha = \dfrac{P^2}{4h^2}\), \(\sin^2 \alpha = \dfrac{P^2}{4k^2}\)

\(\cos^2 \alpha + \sin^2 \alpha = \dfrac{P^2}{4h^2} + \dfrac{P^2}{4k^2}\)

\(\Rightarrow \dfrac{P^2}{4x^2} + \dfrac{P^2}{4y^2} = 1\) or \(\dfrac{1}{x^2} + \dfrac{1}{y^2} = \dfrac{4}{P^2}\)

Locus Question 3:

The locus of points (x, y) in the plane satisfying sin2 x + sin2 y = 1 consists of  

  1. a circle centered at origin 
  2. infinitely many circles that are all centered at the origin
  3. infinitely many lines with slope ± 1  
  4. finitely many lines with slope ± 1

Answer (Detailed Solution Below)

Option 3 : infinitely many lines with slope ± 1  

Locus Question 3 Detailed Solution

Calculation

sin2y = cos2x

siny = ± cosx

If sin y = cos x = sin(\(\frac{\pi}{2}\) - x)

⇒ y = nπ + (-1)n(\(\frac{\pi}{2}\) - x)

If sin y = -cos x = sin(x - \(\frac{\pi}{2}\))

⇒ y = nπ + (-1)n(x - \(\frac{\pi}{2}\))

Hence option 3 is correct

Locus Question 4:

If the ratio of the distances of a variable point P from the point (1, 1) and the line x - y + 2 = 0 is 1 : √2 then the equation of the locus of P is

  1. x2 + 2xy + y2 - 8x = 0
  2. 3x + 2xy + 3y- 12x - 4y + 4 = 0
  3. x2 + 2xy + y2 - 12x + 4y + 4 = 0
  4. x2 + 2xy + y2 - 8x + 8y = 0

Answer (Detailed Solution Below)

Option 2 : 3x + 2xy + 3y- 12x - 4y + 4 = 0

Locus Question 4 Detailed Solution

Given:

The ratio of distances of point P(x, y) from point (1, 1) and line x − y + 2 = 0 is 1 : √2

Concept:

Use distance formulas to relate point-to-point and point-to-line distances.

Formula Used:

Distance between two points: √[(x₂ − x₁)² + (y₂ − y₁)²]

Distance from point to line ax + by + c = 0: |ax + by + c| / √(a² + b²)

Calculation:

Let P(x, y) be the variable point

Distance from P to (1, 1): √[(x − 1)² + (y − 1)²]

Distance from P to line x − y + 2 = 0: |x − y + 2| / √2

Given ratio = 1 : √2

⇒ √[(x − 1)² + (y − 1)²] = (1 / √2) × |x − y + 2|

⇒ √[(x − 1)² + (y − 1)²] = |x − y + 2| / √2

⇒ Square both sides:

⇒ (x − 1)² + (y − 1)² = (x − y + 2)² / 2

⇒ x² − 2x + 1 + y² − 2y + 1 = (x² − 2xy + y² + 4x − 4y + 4) / 2

⇒ x² + y² − 2x − 2y + 2 = (x² − 2xy + y² + 4x − 4y + 4) / 2

⇒ Multiply both sides by 2:

⇒ 2x² + 2y² − 4x − 4y + 4 = x² − 2xy + y² + 4x − 4y + 4

⇒ Move RHS to LHS:

⇒ (2x² − x²) + (2y² − y²) + (−4x − 4x) + (−4y + 4y) + 2xy + (4 − 4)

⇒ 3x² + 3y² − 8x + 2xy = 0

∴ The equation of the locus is:

3x² + 2xy + 3y² − 12x − 4y + 4 = 0

Locus Question 5:

Let A be the point (0, 4) in the xy-plane and let B be the point (2t, 0). Let L be the midpoint of AB and let the perpendicular bisector of AB meet the y-axis M. Let N be the midpoint of LM. Then locus of N is

  1. a circle
  2. a parabola 
  3. a straight line 
  4. a hyperbola 

Answer (Detailed Solution Below)

Option 2 : a parabola 

Locus Question 5 Detailed Solution

Calculation

qImage6791d28fb98624c77d509e22

Equation of LM:

y - 2 =\(\frac{ t }{ 2}\) (x - t)

⇒ M(0, \(\frac{4 - t^2 }{ 2}\))

Midpoint of LM: N(h, k)

⇒ 2h = t, 2k = 4 - \(\frac{t^2 }{ 2}\)

⇒ x2 = 2 - y

Hence option 2 is correct

Locus Question 6:

A point P moves such that its distances from two given points A and B are equal. Then what is the locus of the point P?

  1. A straight line which is the right bisector of AB
  2. A circle with cèntre at A
  3. A circle with centre at B
  4. A straight line passing through either A or B

Answer (Detailed Solution Below)

Option 1 : A straight line which is the right bisector of AB

Locus Question 6 Detailed Solution

Explanation:

qImage4660

∴ The locus of point P will be a straight line which is the right bisector of AB.

Locus Question 7:

Let A and B be two points. What is the locus of the point P such that angle APB = 90°?

  1. the line AB itself
  2. the point P itself
  3. the circumference of the circle with AB as diameter
  4. the line perpendicular to AB and bisecting AB

Answer (Detailed Solution Below)

Option 3 : the circumference of the circle with AB as diameter

Locus Question 7 Detailed Solution

Concept used: 

Angle subtended by the diameter of a circle at a point on the circumference is Right angle (90°).

.qImage12937

Explanation:

Join AB and draw a circle with AB as diameter. The locus of point P is the circumference of this circle, since Angle subtended by the diameter of a circle at a point on the circumference is Right angle (90°). Therefore, whatever be the position of point P, the measure of ∠ APB will always be 90°.

qImage12938

∴ The locus of point P is the circumference of the circle with AB as diameter.

Locus Question 8:

A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is

  1. 3x2 + 4y2 = 192
  2. 4x2 + 3y2 = 192 
  3. x2 + y2 = 192
  4. None of these

Answer (Detailed Solution Below)

Option 1 : 3x2 + 4y2 = 192

Locus Question 8 Detailed Solution

Concept:

The distance of a point (h,k) from a line Ax + By + C = 0 is \(d = \left |{ Ah+Bk + C \over \sqrt{A^2 + B^2}}\right|\)

The distance between two point (x1,y1) and (x2,y2) is \(\sqrt {(x_2-x_1)^2 +(y_2 -y_1)^2}\)

Calculation:

Let the moving point be (x,y)

then its distance from (4,0) is

\(\sqrt {(x-4)^2 +y^2}\)

and the distance of the point (x,y) from the line x = 16

that is, the distance of the point from the line x + 0y - 16 = 0 is 

\(d = \left |{ x - 16\over \sqrt{(1)^2 + (0)^2}}\right|\)

⇒ \(d = \left |{ x - 16}\right|\)

Given that, the distance from the point (4, 0) is half that of its distance from the line x = 16

⇒ \(\sqrt {(x-4)^2 +y^2} = {1 \over 2}|{x -16 }|\)

Squaring both sides,

⇒ \({(x-4)^2 +y^2} = {1 \over 4}|{x -16 }|^2\)

⇒ 4(x2 - 8x + 16 + y2) = x2 - 32x + 256

⇒ 3x2 + 4y2 = 192

∴ The correct option is (1).

Locus Question 9:

If M is the foot of the perpendicular drawn from the origin O on to the variable line L, passing through a fixed point (a, b) then the locus of the mid point of OM is

  1. x2 + y2 = a2 + b2
  2. 2x2 + 2y2 − ax − by = 0
  3. ax + by = 0
  4. 2x2 + 2y2 − ay − bx = 0

Answer (Detailed Solution Below)

Option 2 : 2x2 + 2y2 − ax − by = 0

Locus Question 9 Detailed Solution

Concept:

Locus: The locus is the collection of all those points whose position is defined by a particular condition.

Internal sectional formula: Let P (x1, y1) and Q (x2, y2) be the endpoints of the given line segment PQ and R(x, y) be the point which divides PQ in the ratio m: n.

F8 Vinanti Teaching 08.02.23 D1

 

 

 

Then, the coordinates of R (x, y) are \(\left\{\frac{m × x_{2} + n × x_{1}}{m + n}, \frac{m × y_{2} + n × y_{1}}{m + n}\right\}\).

Explanation:

Let R(x, y) be the mid-point of OM and (α, β ) be the co-ordinate of the point M. Then

x =\(\frac{0+α}{2}\) and y =\(\frac{0+β}{2}\) 

⇒ α = 2x  and β = 2y

F8 Vinanti Teaching 08.02.23 D2

Therefore, the coordinates of M are (2x, 2y).

The slope of OM = \(\frac{2y-0}{2x-0}=\frac{y}{x}\)

and Slope of MP =\(\frac{2y-b}{2x-a}\)

Since OM is perpendicular to MP. Therefore

Slope of OM × Slope of MP = -1

⇒ \(\frac{y}{x} \times \frac{2y-b}{2x-a}=-1\)

⇒ y(2y - b) =  - x (2x - a)

⇒ 2y2 - by = - 2x2 + ax

⇒ 2x2 + 2y2 - ax - by = 0

Therefore, the locus of the midpoint of OM is 2x2 + 2y2 - ax - by = 0

Locus Question 10:

If A = (1, 2), B = (2, 1) and P is any point satisfying the condition PA + PB = 3, then the equation of the locus of P is

  1. 16x2 + 7y2 - 64x - 48 = 0
  2. x2 + 10xy + 25y2 - 34x - 170y = 0
  3. 32x2 + 8xy + 32y2 - 108x - 108y + 99 = 0
  4. 4x2 + 12xy + 9y2 - 20x - 30y = 0

Answer (Detailed Solution Below)

Option 3 : 32x2 + 8xy + 32y2 - 108x - 108y + 99 = 0

Locus Question 10 Detailed Solution

Concept:

Distance between (x1,y1) and (x2,y2) is \(\sqrt{(x_2-x_1)^2 +(y_2 - y_1)^2}\)

Calculation:

Let the coordinates of P be (x,y)

Given: PA + PB = 3 where A = (1, 2), B = (2, 1) 

⇒ \(\sqrt{(x-1)^2 +(y-2)^2}\) + \(\sqrt{(x-2)^2 +(y-1)^2}\) = 3

⇒ \(\sqrt{(x-1)^2 +(y-2)^2}\) = 3 -\(\sqrt{(x-2)^2 +(y-1)^2}\) 

Squaring both sides,

⇒ \({(x-1)^2 +(y-2)^2}\) = 9 + \({(x-2)^2 +(y-1)^2}\)  - 6\(\sqrt{(x-2)^2 +(y-1)^2}\) 

⇒ x2 - 2x + 1 + y2 - 4y + 4 = 9 + x2 - 4x + 4 + y2 - 2y + 1 - 6\(\sqrt{(x-2)^2 +(y-1)^2}\)

⇒ 5 - 2x - 4y  = 14 - 4x - 2y - 6\(\sqrt{(x-2)^2 +(y-1)^2}\)

⇒ 6\(\sqrt{(x-2)^2 +(y-1)^2}\) = 9 - 2x + 2y

Again squaring both sides,

⇒ 36[\({(x-2)^2 +(y-1)^2}\)] = (9 - 2x + 2y)2

⇒ 36[x2 - 4x + 4 + y2 - 2y + 1] = 81 + 4x2 + 4y2 - 36x + 36y - 8xy

⇒ 36x2 + 36y2 - 144x - 72y + 180 = 81 + 4x2 + 4y2 - 36x + 36y - 8xy

⇒ 32x2 + 32y2 + 8xy - 108x - 108y + 99 = 0

∴ The correct answer is option (3).

Get Free Access Now
Hot Links: teen patti all teen patti stars teen patti - 3patti cards game rummy teen patti teen patti master downloadable content