Sequences and Series MCQ Quiz in मल्याळम - Objective Question with Answer for Sequences and Series - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 16, 2025
Latest Sequences and Series MCQ Objective Questions
Top Sequences and Series MCQ Objective Questions
Sequences and Series Question 1:
Test for the convergence of the series. \(\sqrt{\frac{1}{2}} + \sqrt{\frac{2}{3}} + \sqrt{\frac{3}{4}} + \sqrt{\frac{4}{5}} + .....\)
Answer (Detailed Solution Below)
Sequences and Series Question 1 Detailed Solution
Given:
\(\sqrt{\frac{1}{2}} + \sqrt{\frac{2}{3}} + \sqrt{\frac{3}{4}} + \sqrt{\frac{4}{5}} + .....\)
Concept used:
The necessary condition of series to be convergent is \(\underset{n \rightarrow \infty}{L t} {u_n}= 0\);
Limit comparison test:
if un and vn are positive terms sequence such that
where c > 0 and c is finite then Both un and vn converge and diverge together
P- series test:
∑ \(\frac{1}{n^p}\)
un = \(\underset{n \rightarrow \infty}{L t} \sqrt{\frac{n}{n + 1 }}=1\)
⇒ necessary condition fails
Now, by limit comparison test
Take
\(\underset{n \rightarrow \infty}{L t} \frac{u_n}{v_n}= \underset{n \rightarrow \infty}{L t} \sqrt{\frac{1}{1+\frac{1}{n}}}=1\) (Finite)
∑vn is divergent by p-series test. (p = 0 < 1)
∴ By limit comparison test, ∑un is divergent
∴ option 2 is correct
Sequences and Series Question 2:
Find the value of \(\rm \frac{m -n}{m +n} + \frac{1}{3} \left( \frac{m -n}{m + n} \right)^3 + \frac{1}{5} \left( \frac{m - n}{m + n} \right)^5 + .... + \infty \)
Answer (Detailed Solution Below)
Sequences and Series Question 2 Detailed Solution
Concept:
\(log(1-x)\rm = \left( - x - \frac{x^2}{2 } - \frac{x^3}{3 } - \frac{x^4}{4} ... \infty\right)\)
\(log (1+x)= \left( x - \frac{x^2}{2 } +\frac{x^3}{3 } - \frac{x^4}{4} ... \infty\right)\)
Calculation:
We know that,
\(\rm \log_e \left( \frac{1-x}{1 + x} \right) = \log_e ( 1 - x) - \log_e( 1 + x)\)
\(\rm = \left( - x - \frac{x^2}{2 } - \frac{x^3}{3 } - \frac{x^4}{4} ... \infty\right)- \left( x - \frac{x^2}{2 } +\frac{x^3}{3 } - \frac{x^4}{4} ... \right)\)
\(\rm = -2x - 2 \frac{x^3}{3} - 2 \frac{x^5}{5} ....\)
\(\rm \log_e \left( \frac{1-x}{1+x} \right) = -2 \left[ x + \frac{x^3}{3} + \frac{x^5}{5} + ... \right] \)
\(- \frac{1}{2} \log_e \left( \frac{1-x}{1+x} \right) = x + \frac{x^3}{3} + \frac{x^5}{5} +....\)
Therefore,
\(\rm \frac{m -n}{m +n} + \frac{1}{3} \left( \frac{m -n}{m+n} \right)^3 + \frac{1}{5} \left( \frac{m -n}{m+n} \right)^5 + .... \infty\)
\(= \frac{-1}{2} \log_e \frac{1 - \left( \frac{m -n}{m + n} \right)}{1+ \left( \frac{m -n}{m + n} \right)} \)
\(\rm = \frac{-1}{2} \log_e \left( \frac{m + n-(m - n)}{m + n + m - n} \right)\)
\(\rm = \frac{-1}{2} \log_e \left( \frac{2n}{2m} \right) = \frac{-1}{2} \log_e\left( \frac{m}{n} \right)\)
Sequences and Series Question 3:
If ai > 0 for i = 1, 2, 3,..,n and a1, a2, a3, ...an = 1 then the greatest value of (1 + a1)(1 + a2)... (1 + an) is:
Answer (Detailed Solution Below)
Sequences and Series Question 3 Detailed Solution
Let the given expansion be f(n)
f(n) = (1 + a1)(1 + a2)... (1 + an)
Also given, a1 = a2 = a3 = ... = an = 1
Consider for n = 2
f(2) = (1 + a1)(1 + a2)
f(2) = (1 + 1)(1 + 1) = 22
Consider for n = 5
f(5) = (1 + a1)(1 + a2)(1 + a3)(1 + a4)(1 + a5)
f(5) = (1 + 1)(1 + 1)(1 + 1)(1 + 1)(1 + 1) = 25
Similary for n times, it is given as
f(n) = (1 + 1)(1 + 1) ...... (1 + 1) = 2n
(1 + a1)(1 + a2)... (1 + an) = 2n
Sequences and Series Question 4:
If (1+ x + x2)n = \(\rm\displaystyle\sum_{r = 0}^{2 n}\) ar xr, then a1 − 2a2 + 3a3 − …. −2n a2n is
Answer (Detailed Solution Below)
Sequences and Series Question 4 Detailed Solution
Concept Used:-
If the summation from 0 to n such that \(\rm\displaystyle\sum_{r = 0}^{ n}\) ar xr is given, then the expanded form of it can be written as,
⇒ \(\rm\displaystyle\sum_{r = 0}^{ n}\) ar xr = a0+a1 x+a2 x2+a3 x3+a4 x4+..........+anxn
Explanation:-
Given,
(1+ x + x2)n = \(\rm\displaystyle\sum_{r = 0}^{2 n}\) ar xr,
On the expanding right-hand side, we get,
\(\left(1+x+x^2\right)^n=a_0+a_1 x+a_2 x^2+a_3 x^3+a_4 x^4+\cdots+a_{2 n} x^{2 n}\)
Differentiate it with respect to x,
\(n\left(1+x+x^2\right)^{n-1}(1+2 x)=a_1+2 a_2 x+3 a_3 x^2+4 a_4 x^3+\cdots+2 n a_n x^{2 x-1}\)Now put x = -1 in the above equation,
\(\Rightarrow n(1-1+1)^{n-1}(1-2)=a_1-2 a_2+3 a_3-4 a_4+5a_5 \cdots-2 n a_{2n}\\ \Rightarrow n^1(1)^{n-1}(-1)=a_1-2 a_2+3 a_3-4 a_4+5a_5 \cdots-2 n a_{2n}\\ \Rightarrow -n=a_1-2 a_2+3 a_3-4 a_4+5a_5 \cdots-2 n a_{2n}\)
So, the value of a1 − 2a2 + 3a3 − …. −2n a2n is -n.
Hence, the correct option is 3.
Sequences and Series Question 5:
The Sequence mn where m, n ∈ N is
Answer (Detailed Solution Below)
Sequences and Series Question 5 Detailed Solution
Given:
The Sequence mn where m, n ∈ N
Concept used:
The Sequence is bounded if for all the Terms of the sequence there exists M and m such that m < ai < M, where ai, are the terms in the Sequence
if no such m and M exists then Sequence is Unbounded
if revolving around a number than it is Oscillating.
Calculations:
The Terms of the Sequence mn are as 0, 1, 2, 4, 8,.......,3, 9, 27,........, 4, 16, 64,........ as so on.
So there doesn't exist M such that all the Terms of the Sequence are less than that M and m = 0 here'
∴ The sequence is not bounded i.e Unbounded.
Sequences and Series Question 6:
Test the convergence of the series \(\sum\limits_{n = 1}^\infty {\frac{{(n + 1){x^n}}}{{{n^3}}};x > 0} \)
Answer (Detailed Solution Below)
Sequences and Series Question 6 Detailed Solution
Concept used:
Ratio test:
L = \(\mathop {Lt}\limits_{n \to \infty } \frac{{{u_{n + 1}}}}{{{u_n}}} \)
L < 1 the series is Convergent
L = 1 test fails Neither Convergent nor Divergent
Limit Comparision test:
where c > 0 and finite then, either Both series converges or diverges together
P - Series test:
∑ \(\frac{1}{n^p }\) is convergent for p > 1 and divergent for p ≤ 1
Calculations:
\({u_n} = \frac{{(n + 1){x^n}}}{{{n^3}}}; {u_{n + 1}}\frac{{(n + 2){x^{n + 1}}}}{{{{(n + 1)}^3}}}\)
\(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{n + 2}}{{{{(n + 1)}^3}}}.{x^{n + 1}}.\frac{{{n^3}}}{{(n + 1){x^n}}} = \left( {\frac{{n + 2}}{{n + 1}}} \right){\left( {\frac{n}{{n + 1}}} \right)^3}.x\)
\(\mathop {Lt}\limits_{n \to \infty } \frac{{{u_{n + 1}}}}{{{u_n}}} = \mathop {Lt}\limits_{n \to \infty } \left( {\frac{{1 + \frac{2}{n}}}{{1 + \frac{1}{n}}}} \right)\frac{1}{{{{\left( {1 + \frac{1}{n}} \right)}^3}}}.x = x \)
∴ By ratio test, ∑un converges when x < 1 and diverges when x > 1.
When x = 1, \({u_n} = \frac{{n + 1}}{{{n^3}}}\)
Take \({v_n} = \frac{1}{{{n^2}}}\) ; By Limit comparison test ∑un is convergent
∴ ∑un is convergent if x ≤ 1 and divergent if x > 1.
Sequences and Series Question 7:
\(\sum_{n = 1}^\infty \sin \left( \frac{1}{n} \right)\) is
Answer (Detailed Solution Below)
Sequences and Series Question 7 Detailed Solution
Given:
\(∑_{n = 1}^\infty \sin \left( \frac{1}{n} \right)\)
Concept used:
Limit Comparision test:
if an and bn are two positive series such that \(\underset{n \rightarrow \infty}{L t} \frac{u_{n}}{v_{n}}= c\)
where c > 0 and finite then, either Both series converges or diverges together
P - series test:
∑ \(\frac{1}{n^p}\)is convergent for p > 1 and divergent for p ≤ 1
Calculations:
\(∑_{n = 1}^\infty \sin \left( \frac{1}{n} \right)\)
take vn =
\(\underset{n \rightarrow \infty}{L t} \frac{u_{n}}{v_{n}}= \underset{n \rightarrow \infty}{L t} \frac{\sin \left( \frac{1}{n} \right)}{\left( \frac{1}{n} \right)} = \underset{t \rightarrow 0}{L t} \frac{\sin t}{t} \) (where t = 1/n) = 1
∴ ∑un, ∑vn both converge or diverge. But ∑vn = \(∑ \frac{1}{n}\) is divergent
(p-series test, p = 1);
∴ ∑un is divergent.
Sequences and Series Question 8:
The series \(\sum \frac{{{{\left( {n!} \right)}^2}}}{{\left( {2n} \right)!}}{x^{2n}}\) converges if
Answer (Detailed Solution Below)
Sequences and Series Question 8 Detailed Solution
Concept:
By ratio test, if \(\mathop {\lim }\limits_{n \to \infty } \frac{{{u_n}}}{{{u_{n + 1}}}} = \lambda ,\)
Then the series converges for λ > 1 and diverges for λ < 1 and fails for λ =1;
By Raabe’s test, if \(\mathop {\lim }\limits_{n \to \infty } n\left[ {\frac{{{u_n}}}{{{u_{n + 1}}}} - 1} \right] = k,\)
Then the series converges for k > 1 and diverges for k < 1, but the test fails for k = 1.
Calculation:
From the given series,
\(\frac{{{u_n}}}{{{u_{n + 1}}}} = {\left( {\frac{{n!}}{{\left( {n + 1} \right)!}}} \right)^2}.\frac{{\left( {2\left( {n + 1} \right)} \right)!}}{{\left( {2n} \right)!}}.\frac{{{x^{2n}}}}{{{x^{2\left( {n + 1} \right)}}}}\)
\( \Rightarrow \frac{{{u_n}}}{{{u_{n + 1}}}} = \frac{{\left( {2n + 1} \right)\left( {2n + 2} \right)}}{{{{\left( {n + 1} \right)}^2}}}\frac{1}{{{x^2}}} = \frac{{2\left( {2n + 1} \right)}}{{\left( {n + 1} \right)}}\frac{1}{{{x^2}}}\)
Taking limit,
\(\mathop {\lim }\limits_{n \to \infty } \frac{{{u_n}}}{{{u_{n + 1}}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{2\left( {2 + \frac{1}{n}} \right)}}{{1 + \frac{1}{n}}}\frac{1}{{{x^2}}} = \frac{4}{{{x^2}}}\)
Thus by ratio test, series converges for x2 < 4 and diverges for x2 > 4, but fails for x2 = 4;
When x2 = 4,
\(n\left[ {\frac{{{u_n}}}{{{u_{n + 1}}}} - 1} \right] = n\left[ {\frac{{2n + 1}}{{2\left( {n + 1} \right)}} - 1} \right] = - \frac{n}{{2n + 2}}\)
\(\mathop {\lim }\limits_{n \to \infty } n\left[ {\frac{{{u_n}}}{{{u_{n + 1}}}} - 1} \right] = - \frac{1}{2} < 1\)
Thus by Raabe's test, the series diverges.
Hence the given series
converges for x2 < 4 → -2 < x < 2 and
diverges for x2 ≥ 4 → x ≤ -2 and x ≥ 2
Sequences and Series Question 9:
Test for convergence the series \(\sum\limits_{n = 1}^\infty {{n^{1 - n}}} \)
Answer (Detailed Solution Below)
Sequences and Series Question 9 Detailed Solution
Concept used:
Ratio test:
L = \(\mathop {Lt}\limits_{n \to \infty } \frac{{{u_{n + 1}}}}{{{u_n}}} \)
L > 1 the series is Divergent neither convergent or divergent
L < 1 the series is Convergent
L = 1 test fails Neither Convergent nor Divergent
Calculations:
un = n1-n ; un + 1 = (n + 1)-n ;
\(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{(n + 1)}^{ - n}}}}{{{n^{1 - n}}}} = \frac{{{n^n}}}{{n{{(n + 1)}^n}}} = \frac{1}{n}{\left( {\frac{n}{{n + 1}}} \right)^n} \)
\(\mathop {Lt}\limits_{n \to \infty } \frac{{{u_{n + 1}}}}{{{u_n}}} = \mathop {Lt}\limits_{n \to \infty } \frac{1}{n}.{\left( {\frac{1}{{1 + \frac{1}{n}}}} \right)^n} = 0.\frac{1}{e} = 0 < 1 \)
∴ By ratio test ∑un, is convergent
Sequences and Series Question 10:
The series \(\rm u_n=\left(\frac{1}{n}\right).\sin\left(\frac{1}{n}\right)\) is
Answer (Detailed Solution Below)
Sequences and Series Question 10 Detailed Solution
Given:
\(\rm u_n=\left(\frac{1}{n}\right).\sin\left(\frac{1}{n}\right)\)
Concept used:
Limit Comparision test:
if an and bn are two positive series such that \(\underset{n \rightarrow \infty}{L t} \frac{a_n}{b_n} = c \)
where c > 0 and finite then, either Both series converges or diverges together
P - Series test:
∑ \(\frac{1}{n^p }\)is convergent for p > 1 and divergent for p ≤ 1
Calculations:
Let vn = \(\frac{1}{n^2 }\) , so that Σvn is convergent by p-series test.
\(\rm \displaystyle Lt_{n\rightarrow \infty}\left(\frac{u_n}{v_n}\right)=\rm \displaystyle Lt_{n\rightarrow \infty}\frac{\sin \left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)}\)
\(=\rm \displaystyle Lt_{n\rightarrow 0}\left(\frac{\sin t}{t}\right)\)
where t = 1/n, Thus \(\rm \displaystyle Lt_{n\rightarrow \infty}\left(\frac{u_n}{v_n}\right)=1\ne0\)
∴ By Limit comparison test Σun is convergent.