General Equation of Conics MCQ Quiz in मल्याळम - Objective Question with Answer for General Equation of Conics - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 17, 2025

നേടുക General Equation of Conics ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക General Equation of Conics MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest General Equation of Conics MCQ Objective Questions

Top General Equation of Conics MCQ Objective Questions

General Equation of Conics Question 1:

The equation obtained by transforming x2 + y2 - 6x + 10y - 2 = 0 to the parallel axis through (3, -5) is ______

  1. x2 + y2 = 16
  2. x2 + y2​ = 9
  3. x2 + y2​ = 25
  4. x2 + y2 = 49
  5. x2 + y2 = 36

Answer (Detailed Solution Below)

Option 5 : x2 + y2 = 36

General Equation of Conics Question 1 Detailed Solution

Explanation:

We need The equation obtained by transforming x2 + y2 - 6x + 10y - 2 = 0 to the parallel axis through (3, -5).

So,

Let the coordinates of (x, y) of any point on the given curve  x2 + y2 - 6x + 10y - 2 = 0  change to (X, Y)  on shifting origin to the point (3, - 5), the new axes remaining parallel to the original axes.

Then, we get, 

 x2 + y2 - 6x + 10y - 2 = 0

transforms (after substituting the values x = X + 3 and y = Y - 5 ) as:

(X + 3)2 + (Y - 5)2 - 6(X + 3) + 10(Y - 5) - 2 = 0

⇒ X2 + (2 × X × 3) +3+ Y2 - (2 × X × 5) + 52 - 6X - 18 + 10Y - 50 - 2 = 0

⇒ X2 + Y2 = 36

General Equation of Conics Question 2:

The condition that the cone ax2 + by2 + cz2 + 2ux + 2vy + 2wz + d = 0 may have three mutually perpendicular tangent planes, is -

  1. bc + ca + ab = f2 + g2 + h2
  2. x2 + y2 = z2 tan2θ
  3. a + b + c = 0
  4. ua + vb + wc + d = 0

Answer (Detailed Solution Below)

Option 1 : bc + ca + ab = f2 + g2 + h2

General Equation of Conics Question 2 Detailed Solution

Concept:

Condition for Three Mutually Perpendicular Tangent Planes to a Cone:

  • The general second-degree equation of a cone is: ax² + by² + cz² + 2fyz + 2gzx + 2hxy = 0.
  • This form represents a cone with its vertex at the origin.
  • Mutually perpendicular planes are three planes intersecting at right angles to each other.
  • For a cone to have three mutually perpendicular tangent planes, a special condition must be satisfied.
  • Condition: bc + ca + ab = f² + g² + h²
  • This condition ensures the cone admits three planes whose normals are mutually perpendicular.
  • Tangent Plane: A plane that touches the cone surface at a single point without intersecting it nearby.

 

Calculation:

Given,

Equation of cone: ax² + by² + cz² + 2ux + 2vy + 2wz + d = 0

Compare this with standard cone: ax² + by² + cz² + 2fyz + 2gzx + 2hxy = 0

⇒ To have mutually perpendicular tangent planes, we apply the condition:

⇒ bc + ca + ab = f² + g² + h²

⇒ This relation ensures existence of three mutually perpendicular tangent planes.

∴ Required condition is bc + ca + ab = f² + g² + h²

General Equation of Conics Question 3:

If equation 2x2 + 7xy + 3y2 + 8x + 14y + λ = 0 represents a pair of straight lines, then the value of λ is -  

  1. 2
  2. 4
  3. 6
  4. 8

Answer (Detailed Solution Below)

Option 4 : 8

General Equation of Conics Question 3 Detailed Solution

Concept Used:-

If the standard equation \(a x^2+2 h x y+b y^2+2 g x+2 f y+c=0\) represents a pair of straight line, then it follow the following condition,

\(a b c+2 f g h-a f^2-b g^2-c h^2=0\)

Explanation:-

Given equation of pair of straight lines is,

2x2 + 7xy + 3y2 + 8x + 14y + λ = 0 

So, from the above concept,

\(6 \lambda+2(7)(4)\left(\frac{7}{2}\right)-2(7)^2-3(4)^2-\lambda\left(\frac{7}{2}\right)^2=0\)

\(\begin{aligned} & \Rightarrow 6 \lambda+196-98-48-\frac{49 \lambda}{4}=0 \\ & \Rightarrow \frac{49 \lambda}{4}-6 \lambda=196-146 \\ & \Rightarrow \frac{25 \lambda}{4}=50 \\ & \Rightarrow \lambda=\frac{50 \times 4}{25}\\ & \Rightarrow \lambda=8 \end{aligned}\)

Hence, the value of λ is 8. Hence, the correct option is 4.

General Equation of Conics Question 4:

The equation of the conic with focus at (1, -1), directrix along x - y + 1 = 0 and with eccentricity  √2 is

  1. x2 - y2 = 1
  2. xy =1
  3. 2xy - 4x + 4y + 1 = 0
  4. 2xy + 4x - 4y - 1 = 0

Answer (Detailed Solution Below)

Option 3 : 2xy - 4x + 4y + 1 = 0

General Equation of Conics Question 4 Detailed Solution

Concept:

The distance of any point of the curve from focus is equal to e times

the distance of that point from the directrix, where e is the eccentricity.

Calculation:

Let (x,y) be any point on the conic

⇒ \(\sqrt{(x-1)^2 +(y+1)^2} = e |{x-y +1 \over \sqrt {1^2 +1^2}}|\)

⇒ \(\sqrt{(x-1)^2 +(y+1)^2} = \sqrt{2} |{x-y +1 \over \sqrt {1^2 +1^2}}|\)

⇒ \({(x-1)^2 +(y+1)^2} = {2} |{x-y +1 \over \sqrt {2}}|^2\)

⇒ x2 - 2x + 1 + y2 + 2y + 1 = (x - y + 1)2

 x2 - 2x + 1 + y2 + 2y + 1 = x2 + y2 + 1 - 2xy + 2x - 2y

⇒ 2xy - 4x + 4y + 1 = 0

∴ The correct answer is option (3).

General Equation of Conics Question 5:

The equation 3x2 + 2xy + 3y2 - 16x + 20 = 0 represents -

  1. A parabola
  2. An ellipse
  3. A circle
  4. A hyperbola

Answer (Detailed Solution Below)

Option 2 : An ellipse

General Equation of Conics Question 5 Detailed Solution

Calculation:

Given equation is  3x2 + 2xy + 3y- 16x + 20 = 0 

Comparing the equation with the standard form, ax2 + 2hxy + by2 + 2gx + 2fy + c = 0.

⇒ a = 3, h = 1, b = 3, g = - 8, f = 0, c = 20.

Δ = abc + 2fgh - af2 - bg2 - ch2

⇒ Δ = 3 × 3 × 20 + 2 × 0 ×  gh - a × 0 - 3 × (-8)2 - 20 × 1

⇒ Δ = 180 - 192 - 20 = - 32

⇒ Δ < 0.

Discriminant = h2 - ab

⇒ Discriminant = 1 - 3 × 3 = - 8

∵ Δ and discriminant are less than 0; the curve is either a circle or an ellipse.

Consider \(\rm\frac{\Delta }{a+b}\) = \(\frac{-32}{3+3}\) = \(\frac{-32}{6} < 0\)

∴ The curve is an ellipse.

General Equation of Conics Question 6:

The equation ax2 + by2 + hx + hy = 0, where h ≠ 0, represents a pair of straight lines, if

  1. a + b = 0
  2. a + h = 0
  3. b + h = 0
  4. None of these

Answer (Detailed Solution Below)

Option 1 : a + b = 0

General Equation of Conics Question 6 Detailed Solution

Concept:

The general second order equation:

Ax2 + 2Hxy + By2 + 2Gx + 2Fy + C = 0, represents

Circle: a = b and h = 0

Pair of lines: ABC + 2FGH - AF2 - BG2 - CH2 = 0

Calculation:

Given that,

ax2 + by2 + hx + hy = 0 and h ≠ 0 

On comparing it with general equation mentioned above

A = a, B = b, H = 0, G = h/2, F = h/2 & C = 0

We know that, for pair of straight line,

ABC + 2FGH - AF2 - BG2 - CH2 = 0

⇒ 0 + 0 - a(h/2)2 - b(h/2)2 - 0 = 0

⇒ (a + b)h2/4 = 0

⇒ a + b = 0 

Get Free Access Now
Hot Links: teen patti real teen patti master download teen patti mastar