As inverse of Differentiation MCQ Quiz in मल्याळम - Objective Question with Answer for As inverse of Differentiation - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 16, 2025

നേടുക As inverse of Differentiation ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക As inverse of Differentiation MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest As inverse of Differentiation MCQ Objective Questions

Top As inverse of Differentiation MCQ Objective Questions

As inverse of Differentiation Question 1:

The anti - derivative of the function u(x)v”(x) - u”(x)v(x) is:

  1. f(x)g’(x) + g(x)f’(x) + C
  2. f”(x)g’(x) + g”(x)f’(x) + C
  3. f(x)g’(x) – g(x)f’(x) + C
  4. f”(x)g’(x) – g”(x)f’(x) + C

Answer (Detailed Solution Below)

Option 3 : f(x)g’(x) – g(x)f’(x) + C

As inverse of Differentiation Question 1 Detailed Solution

\(\smallint \left\{ {{\rm{u}}\left( {\rm{x}} \right){\rm{v''}}\left( {\rm{x}} \right) - {\rm{u''}}\left( {\rm{x}} \right){\rm{v}}\left( {\rm{x}} \right)} \right\}dx = \smallint {\rm{u}}\left( {\rm{x}} \right){\rm{v''}}\left( {\rm{x}} \right){\rm{dx}} - \smallint {\rm{u''}}\left( {\rm{x}} \right){\rm{v}}\left( {\rm{x}} \right){\rm{dx}}\)

\(= \left\{ {u\left( x \right)v'\left( x \right) - \smallint u'\left( x \right)v'\left( x \right)dx} \right\} - \left\{ {u\left( x \right)v'\left( x \right) - \smallint u'\left( x \right)v'\left( x \right)dx} \right\}\; + \;C\)

= f(x)g’(x) – g(x)f’(x) + C

As inverse of Differentiation Question 2:

If \(f\left( x \right) = \frac{1}{{\sqrt {ax + b} }}\), then its antiderivative is 

  1. \(\frac{1}{a}{\left( {ax + b} \right)^{\frac{{ - 1}}{2}}} + C\)
  2. \(\frac{2}{a}{\left( {ax + b} \right)^{\frac{1}{2}}} + C\)
  3. \(\frac{2}{a}{\left( {ax + b} \right)^{\frac{3}{2}}} + C\)
  4. \(\frac{3}{{2a}}{\left( {ax + b} \right)^{\frac{3}{2}}} + C\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{2}{a}{\left( {ax + b} \right)^{\frac{1}{2}}} + C\)

As inverse of Differentiation Question 2 Detailed Solution

Given function is \(f\left( x \right) = \frac{1}{{\sqrt {ax + b} }}\)

Its antiderivative is \(F\left( x \right) = \smallint f\left( x \right)dx + C\)

\(F\left( x \right) = \smallint \frac{1}{{\sqrt {ax + b} }}dx = \smallint \frac{1}{{{{\left( {ax + b} \right)}^{1/2}}}}dx = \smallint {\left( {ax + b} \right)^{ - 1/2}}dx = \frac{{{{\left( {ax + b} \right)}^{\frac{1}{2}}}}}{{\frac{1}{2}a}} + C = \frac{2}{a}{\left( {ax + b} \right)^{\frac{1}{2}}} + C\)

Get Free Access Now
Hot Links: teen patti earning app teen patti teen patti gold download teen patti comfun card online teen patti rummy