Trigonometric Values MCQ Quiz - Objective Question with Answer for Trigonometric Values - Download Free PDF
Last updated on Jun 4, 2025
Latest Trigonometric Values MCQ Objective Questions
Trigonometric Values Question 1:
Let PQR be a right angled triangle, right-angled at R. Let PQ = 29 cm, QR = 21 cm and ∠Q = θ. Find the value of cos2 θ – sin2 θ.
Answer (Detailed Solution Below)
Trigonometric Values Question 1 Detailed Solution
Given:
Let PQR be a right-angled triangle, right-angled at R.
PQ = 29 cm, QR = 21 cm, and ∠Q = θ.
Formula used:
cos² θ - sin² θ = cos 2θ
Calculations:
In Triangle PQR using the Pythagorean theorem:
⇒ PR² = PQ² - QR²
⇒ PR² = 29² - 21²
⇒ PR² = 841 - 441
⇒ PR = 20 cm
cos θ = QR / PQ = 21 / 29
sin θ = PR / PQ = 20 / 29
Next, we use the identity for cos² θ - sin² θ:
⇒ cos² θ - sin² θ = (cos θ + sin θ) × (cos θ - sin θ)
⇒ cos² θ - sin² θ = (21/29)² - (20/29)²
⇒ cos² θ - sin² θ = (441/841) - (400/841)
⇒ cos² θ - sin² θ = (441 - 400) / 841 = 41 / 841
∴ The correct answer is option (1).
Trigonometric Values Question 2:
Let ABC be a right-angled triangle with a right angle at B. If tan A = √3, then find the value of sin A cos C + cos A sin C and cos A cos C - sin A sin C.
Answer (Detailed Solution Below)
Trigonometric Values Question 2 Detailed Solution
Given:
Let ABC be a right-angled triangle with a right angle at B.
tan A = √3,
Formula used:
sin (A + C) = sin A cos C + cos A sin C
cos (A + C) = cos A cos C - sin A sin C
Calculation:
Given tan A = √3
⇒ A = 60° (since tan 60° = √3)
In ΔABC, since B = 90°, A + C = 90°
⇒ C = 30°
Now, sin A cos C + cos A sin C = sin (A + C)
⇒ sin 90° = 1
cos A cos C - sin A sin C = cos (A + C)
⇒ cos 90° = 0
∴ The correct answer is option (3).
Trigonometric Values Question 3:
The value of \(\rm \left[\frac{\cos 50^\circ}{1+\sin 50^\circ}\right]+\left[\frac{1+\sin 50^\circ}{\cos50^\circ}\right]\) is:
Answer (Detailed Solution Below)
Trigonometric Values Question 3 Detailed Solution
Given:
We need to find the value of: \(\rm \left[\frac{\cos 50^\circ}{1+\sin 50^\circ}\right]+\left[\frac{1+\sin 50^\circ}{\cos50^\circ}\right]\)
Formula Used:
cos² θ + sin² θ = 1
Calculation:
\(\rm \left[\frac{\cos 50^\circ}{1+\sin 50^\circ}\right]+\left[\frac{1+\sin 50^\circ}{\cos50^\circ}\right]\)
Take the LCM of the two terms:
\(\frac{cos² 50° + (1 + sin 50°)² }{(1 + sin 50°) × cos 50°}\)
Expanding the numerator:
cos² 50° + (1 + 2sin 50° + sin² 50°)
Using the identity cos² θ + sin² θ = 1:
1 + (1 + 2sin 50°)
2 + 2sin 50°
Now, the expression becomes:
\(\frac{2 + 2sin 50°}{(1 + sin 50°) × cos 50°}\)
Factor out 2 from the numerator:
\(\frac{2(1 + sin 50°)}{(1 + sin 50°) × cos 50°}\)
Cancel out the common term (1 + sin 50°):
2 / cos 50°
The value of 1 / cos 50° is sec 50°.
Therefore, the expression simplifies to: 2 sec 50°
∴ The value of the given expression is 2 sec 50°.
Trigonometric Values Question 4:
Express sin 54° + cos 72° in terms of Trigonometric ratios of angles between 0° and 45°.
Answer (Detailed Solution Below)
Trigonometric Values Question 4 Detailed Solution
Given:
sin 54º
cos 72º
Formula Used:
sin (90º - θ) = cos θ
cos (90º - θ) = sin θ
Calculation:
Using the formula, we have:
sin 54º = cos (90º - 54º)
sin 54º = cos 36º
cos 72º = sin (90º - 72º)
cos 72º = sin 18º
So, sin 54º + cos 72º can be written as:
sin 54º + cos 72º = cos 36º + sin 18º
The correct answer is option 3: cos 36º + sin 18º
Trigonometric Values Question 5:
In a triangle PQR, ∠P + ∠Q = 84°. Find the value of ∠R.
Answer (Detailed Solution Below)
Trigonometric Values Question 5 Detailed Solution
Given:
In a triangle PQR, ∠P + ∠Q = 84º.
Formula Used:
Sum of angles in a triangle = 180º
Calculation:
Let ∠R be the third angle of the triangle.
Sum of angles in a triangle = ∠P + ∠Q + ∠R
⇒ 180º = 84º + ∠R
⇒ ∠R = 180º - 84º
⇒ ∠R = 96º
The value of ∠R is 96º.
Top Trigonometric Values MCQ Objective Questions
Find the value of cos 47° sec 133° + sin 44° cosec 136°.
Answer (Detailed Solution Below)
Trigonometric Values Question 6 Detailed Solution
Download Solution PDFFormula used:
sec (180° - θ) = - sec θ
cosec (180° - θ) = cosec θ
cos θ × sec θ = 1 ; sin θ × cosec θ = 1
Calculation:
cos 47° sec 133° + sin 44° cosec 136°
⇒ cos 47° × sec (180° - 47) + sin 44° cosec (180° - 44°)
⇒ cos 47° × (- sec 47°) + sin 44° × (cosec 44°)
⇒ -1 + 1 = 0
∴ The correct answer is 0.
Simplify \(\frac{\cos 45^{\circ }}{\sec 30^{\circ}+ cosec30^{\circ}}\)
Answer (Detailed Solution Below)
Trigonometric Values Question 7 Detailed Solution
Download Solution PDFGiven:
\(\frac{\cos 45^{\circ }}{\sec 30^{\circ}+ cosec30^{\circ}}\)
Concept used:
Calculation:
\(\frac{\cos 45^{\circ }}{\sec 30^{\circ}+ cosec30^{\circ}}\)
⇒ \(\frac {\frac {1}{\sqrt2}} {\frac {2}{\sqrt3}+ \frac {2}{1}}\)
⇒ \(\frac {\frac {1}{\sqrt2}} {2(\frac {\sqrt3 + 1}{\sqrt3})}\)
⇒ \(\frac {\sqrt3} {2{\sqrt2}({\sqrt3 + 1})}\)
⇒ \(\frac {\sqrt3({\sqrt3 - 1})} {2{\sqrt2}({\sqrt3 + 1})({\sqrt3 - 1})}\)
⇒ \(\frac {\sqrt3({\sqrt3 - 1})} {2{\sqrt2}({3 - 1)}}\)
⇒ \(\frac {({3 - \sqrt3})} {4{\sqrt2}}\)
⇒ \(\frac {({3\sqrt2 - \sqrt6})} {8}\)
∴ The required answer is \(\frac {({3\sqrt2 - \sqrt6})} {8}\).
tan 4384° + cot 6814° = ?
Answer (Detailed Solution Below)
Trigonometric Values Question 8 Detailed Solution
Download Solution PDFCalculation:
tan 4384° + cot 6814°
⇒ tan (180° × 24 + 64°) + cot (90° × 75 + 64°)
⇒ tan 64°- tan 64° = 0
∴ The correct option is 3
Evaluate the following.
sin 25° sin 65° – cos 25° cos 65°.
Answer (Detailed Solution Below)
Trigonometric Values Question 9 Detailed Solution
Download Solution PDFConcept:
sin(90 - a) = cos a
Cos(90 - a) = sin a
Calculation
sin 25° sin 65° – cos 25° cos 65°
⇒ sin 25° sin (90 - 25)° – cos 25° cos (90 - 25)°
⇒ sin 25° cos 25° – cos 25° sin 25°
⇒ 0
The value is 0.
PQR is a triangle right angled at Q and PQ ∶ QR = 3 ∶ 4. What is the value of sin P + sin Q + sin R?
Answer (Detailed Solution Below)
Trigonometric Values Question 10 Detailed Solution
Download Solution PDFCalculation:
As per the question,
sin P + sin Q + sin R = QR/PR + 1 + PQ/PR
The sine of a 90-degree angle is always 1, because for a right angle, the opposite side and the hypotenuse are equal.
= 4/5 + 1 + 3/5
= 12/5
If \(tan40^0 = \alpha\) , then find \(\frac{tan320^0 - tan 310^0}{1 + tan320^0.tan 310^0}\).
Answer (Detailed Solution Below)
Trigonometric Values Question 11 Detailed Solution
Download Solution PDFGiven:
tan 40° = α
Formula used:
Tan (A - B) = (tan A - tan B)/1 + tan A × tan B
tan (90° - θ) = cot θ
cot θ × tan θ = 1
Calculation:
⇒ \(\frac{tan320^0 - tan 310^0}{1 + tan320^0.tan 310^0}\) = tan (320° - 310°)
⇒ tan 10°
Now, we can write:
Tan 10° = tan (50° - 40°)
⇒ [(tan 50° - tan 40°)/1 + (tan 50° × tan 40°)]
⇒ [tan (90° - 40°) - tan 40°/1 + tan (90° - 40°) × tan 40°]
⇒ cot 40° - tan 40°/1 + cot 40° × tan 40°
⇒ (1/α - α)/1 + 1
⇒ (1/α - α)/2
⇒ (1 - α2)/2α
∴ The correct answer is (1 - α2)/2α.
Find the value of \({\cos^215^{\circ} - \sin^215^{\circ}} \over{\cos^2145^{\circ} + \sin^2145^{\circ}}\)
Answer (Detailed Solution Below)
Trigonometric Values Question 12 Detailed Solution
Download Solution PDFConcept used:
Sin2θ + Cos2θ = 1
Cos 2θ - Sin2θ = Cos2θ
Calculation:
\({\cos^215^{\circ} - \sin^215^{\circ}} \over{\cos^2145^{\circ} + \sin^2145^{\circ}}\)
⇒ Cos (2 ×15°)
⇒ Cos 30° = \(\sqrt3 \over 2\)
∴ The correct option is 3
What will be the value of sin10°- \(\dfrac{4}{3}\)sin310°?
Answer (Detailed Solution Below)
Trigonometric Values Question 13 Detailed Solution
Download Solution PDFConcept used:
sin3θ = 3sinθ - 4 sin3θ
Calculation:
sin 10°- \(\dfrac{4}{3}\) sin3 10°
⇒ \(\dfrac{\text{3 Sin10 - 4Sin}^310}{3}\)
⇒ \(\dfrac{\text{Sin3(10)}}{3}\) =
⇒ \(\dfrac{\text{Sin30}}{3}\) = \(\dfrac{1}{2}\) × \(\dfrac{1}{3}\) = \(\dfrac{1}{6}\)
sin 10°- \(\dfrac{4}{3}\)sin3 10°= \(\dfrac{1}{6}\)
In the given figure if AD ⊥ BC, AC = 26 units, CD = 10 units, BC = 42 units, ∠DAC = x and ∠B = y then the value of \(\rm \frac{6}{\cos x}-\frac{5}{\cos y}+8\tan y\) is:
Answer (Detailed Solution Below)
Trigonometric Values Question 14 Detailed Solution
Download Solution PDFGiven:
AD ⊥ BC ; ∠D = 90°
AC = 26 units; CD = 10 units; BC = 42 units
∠DAC = x and ∠B = y
Formula used:
Pythagorean theorem:
H2 = P2 + B2
Cos θ = B/H ; tan θ = P/B
Where, H = hypotenuse; P = perpendicular; B = Base
Calculation:
In △DAC
⇒ AC2 = AD2 + CD2
⇒ 262 = AD2 + 102
⇒ 676 = AD2 + 100
⇒ AD = √(676 - 100) = √576 = 24 units
In △ADB
BD = (BC - CD) = (42 - 10) = 32 units
⇒ AB2 = AD2 + BD2
⇒ AB2 = 242 + 322
⇒ AB2 = 576 + 1024
⇒ AB = √1600 = 40 units
From the question:
\(\rm \frac{6}{\cos x}-\frac{5}{\cos y}+8\tan y\)
⇒ 6/(AD/AC) - 5/(BD/AB) + 8 × (AD/BD)
⇒ 6/(24/26) - 5/(32/40) + 8 × (24/32)
⇒ (6 × 26/24) - (5 × 40/32) + 8 × (24/32)
⇒ 6.5 - 6.25 + 6
⇒ 6.25 = 25/4 units
∴ The correct answer is 25/4 units.
cosec 2910° + sec 4260° + tan 2565° + cot 1755° = ?
Answer (Detailed Solution Below)
Trigonometric Values Question 15 Detailed Solution
Download Solution PDFCalculation:
cosec 2910° + sec 4260° + tan 2565° + cot 1755°
⇒ cosec (2970 - 60)° + sec (4230 + 30)° + tan (2610 - 45)° + (cot 1800 - 45)°
⇒ cosec (33 × 90 - 60)° + sec (47 × 90 + 30)° + tan (29 × 90 - 45)° + (cot 20 × 90 - 45)°
⇒ sec60° + cosec30° + cot45° - cot45°
⇒ 2 + 2 + 1 - 1 = 4
∴ The correct option is 3
Alternate Method
cosec 2910° + sec 4260° + tan 2565° + cot 1755°
⇒ cosec (360 × 8 + 30)° + sec(360 × 12 - 60)° + tan(360 × 7 + 45)° + cot(360 × 5 - 45)°
⇒ cosec30° + sec60° + tan45° - cot45°
⇒ 2 + 2 + 1 - 1 = 4
∴ The correct option is 3.