Taylor's Series MCQ Quiz - Objective Question with Answer for Taylor's Series - Download Free PDF

Last updated on Mar 12, 2025

Latest Taylor's Series MCQ Objective Questions

Taylor's Series Question 1:

The expansion of f(x) = ex cos x at x = 0

  1. \(1 + x - \frac{{2{x^3}}}{{3!}} + \ldots \)
  2. \(1 + x - \frac{{{x^3}}}{{3!}} + \ldots \)
  3. \(1 + x - \frac{{{x^2}}}{{2!}} + \ldots \)
  4. \(1 + x - \frac{{2{x^2}}}{{2!}} + \ldots \)
  5. Not Attempted

Answer (Detailed Solution Below)

Option 1 : \(1 + x - \frac{{2{x^3}}}{{3!}} + \ldots \)

Taylor's Series Question 1 Detailed Solution

Concept:

Taylor series expansion for sin x and cos x are respectively:

\(\sin x = x - \frac{{{x^3}}}{{3!}} + \frac{{{x^5}}}{{5!}} - \frac{{{x^7}}}{{7!}} + \ldots - \infty < x < \infty \)

\(\cos x = 1 - \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}} - \frac{{{x^6}}}{{6!}} + \ldots - \infty < x < \infty \)

Calculation:

For option (1)

f(0) =e0  cos θ = 1

 f’(x) = ex (- sin x) + cos x  ex

 f’(x) = f(x) - ex  sin x

 f’’(x) = f’(x) - ex  x - ex sin x

⇒ f''(x) = f'(x) - f(x) - ex sin x

⇒ f'''(x) = f''(x) - f'(x) - ex cos x - ex sin x

⇒ f'''(x) = f''(x) - f'(x) - f(x) - ex sin x

Now,

f’(0) = 1 - 0 = 1

f’’(0) = f’(0) - e0 (1) - 0 = 1 - 1 = 0

f’’’(0) = f’’(0) f’(0) - 1 - 0

= 1 - 1 - 1 = -2

Taylor series expansion at x = 0 is

\(f\left( x \right) = f\left( 0 \right) + x\;f'\left( 0 \right) + \frac{{{x^2}}}{{2!}}f''\left( 0 \right) + \frac{{{x^3}}}{{3!}}f'''\left( 0 \right)\)

\(f\left( x \right) = 1 + x - \frac{2}{{3!}}{x^3} + \ldots \)

Taylor's Series Question 2:

The third term in the expansion of \(\frac{z-1}{z+1}\) about the point z = 1 using Taylor’s series is 

  1. \(\frac{(z-1)^2}{2}\)
  2. \(\frac{(z-1)^2}{4}\)
  3. \(\frac{(z-1)^3}{8}\)
  4. \(\frac{(z-1)^3}{4}\)
  5. Not Attempted

Answer (Detailed Solution Below)

Option 3 : \(\frac{(z-1)^3}{8}\)

Taylor's Series Question 2 Detailed Solution

Concept:

The taylor’s series expansion of (1 + x)-1 is given by

(1 + x)-1 = 1 – x + x2 – x3 + …

Calculation:

Given complex function is (z – 1)/(z + 1);

To expand about the point z = 1, let us assume t = z – 1;

Now the function will be

\(f\left( z \right) = \frac{{z - 1}}{{z + 1}} = \frac{t}{{t + 2}} = 1 - \frac{1}{{\frac{t}{2} + 1}} = 1 - {\left( {1 + \frac{t}{2}} \right)^{ - 1}}\)

Using standard Taylor's series expansion,

\(f\left( z \right) = 1 - \left[ {1 - \frac{t}{2} + \frac{{{t^2}}}{{{2^2}}} - \frac{{{t^3}}}{{{2^3}}} + \ldots } \right]\)

\( \Rightarrow f\left( z \right) = \frac{t}{2} - \frac{{{t^2}}}{{{2^2}}} + \frac{{{t^3}}}{{{2^3}}} - \ldots \)

The third term in the expansion is \(\frac{{{t^3}}}{8} = \frac{{{{\left( {z - 1} \right)}^3}}}{8}\)

Taylor's Series Question 3:

Which is Maclaurin series?

  1. f(0)+xf'(0)+(x²/2)f''(0)+ _______
  2. f(0)+xf(0)+(x²/2!)f'(0)+ _______
  3. f(0)+xf(0)+(x²/2!)f''(0)+ _______
  4. f(0)+xf'(0)+(x²/2!)f''(0)+ _______

Answer (Detailed Solution Below)

Option 4 : f(0)+xf'(0)+(x²/2!)f''(0)+ _______

Taylor's Series Question 3 Detailed Solution

Explanation:

Maclaurian Series is  f(0)+xf'(0)+(x²/2!)f''(0)+ _______

The basic idea is to be able to express a function as a polynomial, because polynomials are easy to deal with.

Some times a Maclaurin series can make it easier to do complicated operations like integration or differentiation.

Some times Maclaurin series can be used for things like proving that e(ix)=cos(x)+isin(x) by relating sines, cosines, and exponentials in the same “form” to establish equality.

Another application is numerical computation. 

Taylor's Series Question 4:

Second order Taylor's polynomial with variable x is

  1. f(a)+f'(a) (x-a)3
  2. f(a)+f'(a) (x-a)+(1/2!)f''(a) (x-a)2
  3. f(a)+f'(a) (x-a)2
  4. f(a)+f'(a) (x-a)+(1/2!)f''(a) (x-a)3

Answer (Detailed Solution Below)

Option 2 : f(a)+f'(a) (x-a)+(1/2!)f''(a) (x-a)2

Taylor's Series Question 4 Detailed Solution

Explanation:

A Taylor series is a representation of a function as an infinite sum of terms calculated from the values of its derivatives at a single point. These series are advantageous because they can provide approximations for more complex functions using polynomials, which are easier to calculate.

The second-order Taylor's polynomial about the point 'a' is an approximation of an original function f(x) near this point 'a'. This polynomial only involves the function's value and first two derivatives at the point 'a'.

It's given by the formula:

f(x) ≈ f(a) + f'(a)(x - a) + (1/2)f''(a)(x - a)2

Option 1:

f(a) + f'(a) (x - a)3 This is not correct. The term (x - a) should be squared, not cubed. Also, it's missing the second derivative term.

Option 2:

f(a) + f'(a) (x - a) + (1/2)f''(a) (x - a)2 This is the correct form of the second-order Taylor's polynomial. It represents the value of the function at 'a', plus the first derivative at 'a' times (x - a), plus one-half times the second derivative at 'a' times (x - a) squared. This gives an approximation for f(x), specifically near 'a'.

Option 3:

f(a) + f'(a) (x - a)2 This is not correct. The first derivative term should be multiplied by (x-a), not (x-a)2, and it's missing the second derivative term.

Option 4:

f(a) + f'(a) (x - a) + (1/2)f''(a) (x - a)3 This is not correct. The second derivative term should be multiplied by (x - a)2, not (x - a)3.

Hence, option 2 is the correct form for a second order Taylor's polynomial.

Taylor's Series Question 5:

What powers of x does expansion of sin(x) contains?

  1. all powers of x
  2. even powers of x
  3. any alternate powers of x
  4. odd powers of x

Answer (Detailed Solution Below)

Option 4 : odd powers of x

Taylor's Series Question 5 Detailed Solution

Explanation:

The Maclaurin series expansion for Sin (x) is given by the summation from n=0 to infinity of (-1)n ×  x(2n+1)/(2n+1)!

The Expansion of Sinx = x -x3/3! + x5/5! -............

Hence, The Expansion of Sinx contains all the odd powers of x.

Hence, The Correct option is 4.

Top Taylor's Series MCQ Objective Questions

In the neighbourhood of z = 1, the function f(z) has a power series expansion of the form

𝑓(𝑧) = 1 + (1 − 𝑧) + (1 − 𝑧)2 + ...∞ 

Then f(z) is

  1. \(\frac{1}{z}\)
  2. \(\frac{{ - 1}}{{z - 2}}\)
  3. \(\frac{{z - 1}}{{z + 1}}\)
  4. \(\frac{1}{{2z - 1}}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{1}{z}\)

Taylor's Series Question 6 Detailed Solution

Download Solution PDF

Concept:

Taylor series:

\(f(z)=f(a)+\frac{f'(a)}{1!}(z-a)+\frac{f''(a)}{2!}(z-a)^2+...\)

Sum of GP: \(f\left( z \right) = \frac{a}{{1 - r}} \)

Calculation:

f(z) = 1 + (1 – z) + (1 – z)2 + ...∞ 

The above series is in the form of G.P.

a = 1, r = (1 – z)

\(f\left( z \right) = \frac{a}{{1 - r}} = \frac{1}{{1 - \left( {1 - z} \right)}} = \frac{1}{z}\)

If the principal part of the Laurent’s series vanishes, then the Laurent’s series reduces to

  1. Cauchy’s series
  2. Maclaurin’s series
  3. Taylor’s series
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : Taylor’s series

Taylor's Series Question 7 Detailed Solution

Download Solution PDF

Explanation:

Taylor Series:

If f(z) is analytic inside a circle 'C', centre at z = a, and radius 'r', then for all z inside 'C'; the Taylor series is given by-

\(f(z)=f(a)\;+\;(z-a)f'(a)\;+\;\frac{(z-a)^2}{2!}f''(a)\;+\;........\frac{(z-a)^n}{n!}f^n(a)\)

\(\therefore f(z)=\sum_{n=0}^{\infty}\frac{(z-a)^n}{n!}f^n(a)\)

\(\therefore \sum_{n=0}^{\infty}a_n(z-a)^n\) where \(a_n=\frac{f^n(a)}{n!}\)

Laurent Series:

If f(z) is analytic at every point inside and on the boundary of a ring shaped region 'R' bounded by two concentric circle C1 and C2 having centre at 'a' & respective radii r1 and r2 (r1 > r2).

\(f(z)= a_0\;+\;a_1(z-a)\;+\;a_2(z-a)^2\;+\;.....\;+\;a_n(z-a)^n\;+\;a_{-1}(z-a)^{-1}\;+\;a_{-2}(z-a)^{-2}\;+\;....\;+\;a_{-n}(z-a)^{-n}\)

\(\therefore \sum_{n=0}^{\infty}a_n(z-a)^n\;+\;\sum_{n=1}^{\infty}a_{-n}(z-a)^{-n}\)

\(\therefore \sum_{-\infty}^{\infty}a_n(z-a)^n\;where\;a_n=\frac{1}{2\pi i}\oint \frac{f(z)}{(z-a)^{n+1}}dz\)

The negative part of Laurent's series i.e \(\sum_{n=1}^{\infty}a_{-n}(z-a)^{-n}\) is called the singular part, and if that vanishes the terms that remain will be \( \sum_{n=0}^{\infty}a_n(z-a)^n\) , which is nothing but Taylor series.

Important Points

Maclaurin's Series:

When a = 0 in Taylor's series i.e. about origin or powers of z, the series formed is Maclaurin's series.

\(f(z)=f(0)\;+\;(z)f'(0)\;+\;\frac{(z)^2}{2!}f''(0)\;+\;........\frac{(z)^n}{n!}f^n(0)\)

Cauchy's Theorem:

If f(z) is single-valued and an analytic function of z and f'(z) is continuous at each point within and on the closed curve c, then according to the theorem, \(\mathop \oint \limits_C f\left( z \right)dz = 0\).

Taylor series expansion of \({\rm{f}}\left( {\rm{x}} \right) = \mathop \smallint \limits_0^{\rm{x}} {{\rm{e}}^{ - \left( {\frac{{{{\rm{t}}^2}}}{2}} \right)}}{\rm{dt}}\) around x = 0 has the form

f(x) = a0 + a1x + a2x2 + ….

The coefficient a2 (correct to two decimal places) is equal to ________

Answer (Detailed Solution Below) -0.01 - 0.01

Taylor's Series Question 8 Detailed Solution

Download Solution PDF

Taylor series expansion about x = a is given by:

\(f\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right) + f''\left( a \right)\frac{{{{\left( {x - a} \right)}^2}}}{{2!}} + \ldots \)

about x = 0 i.e a = 0

\(f\left( x \right) = f\left( 0 \right) + xf'\left( 0 \right) + \frac{{{x^2}}}{{2!}}f''\left( 0 \right) + \ldots \)

Comparing the coefficients, we get:

\({a_2} = \frac{{f''\left( 0 \right)}}{{2!}}\)

With \(f\left( x \right) = \mathop \smallint \limits_0^x {e^{ - {t^2}/2}}dt\),

\(f'\left( x \right) = \frac{d}{{dx}}\left[ {\mathop \smallint \limits_0^x {e^{ - {t^2}/2}}dt} \right]\)

Using the Leibnitz rule, we can write:

\(f'\left( x \right) = {e^{ - {x^2}/2}}\)

Now, \(f''\left( x \right) = {e^{ - \frac{{{x^2}}}{2}}}\left( {\frac{{ - 2x}}{2}} \right)\)

\(f''\left( x \right) = {e^{ - \frac{{{x^2}}}{2}}}\left( { - x} \right)\)

at x = 0

f’’(0) = 0

\({a_2} = \frac{{f''\left( 0 \right)}}{2} = \frac{0}{2} = 0\)

The Taylor series expansion of 3 sin x + 2 cos x is

  1. \(2 + 3x - {x^2} - \frac{{{x^3}}}{2} + \ldots \)
  2. \(2 - 3x + {x^2} - \frac{{{x^3}}}{2} + \ldots \)
  3. \(2 + 3x + {x^2} + \frac{{{x^3}}}{2} + \ldots \)
  4. \(2 - 3x - {x^2} + \frac{{{x^3}}}{2} + \ldots \)

Answer (Detailed Solution Below)

Option 1 : \(2 + 3x - {x^2} - \frac{{{x^3}}}{2} + \ldots \)

Taylor's Series Question 9 Detailed Solution

Download Solution PDF

Concept:

Taylor series expansion for sin x and cos x are respectively:

\(\sin x = x - \frac{{{x^3}}}{{3!}} + \frac{{{x^5}}}{{5!}} - \frac{{{x^7}}}{{7!}} + \ldots - \infty < x < \infty \)

\(\cos x = 1 - \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}} - \frac{{{x^6}}}{{6!}} + \ldots - \infty < x < \infty \)

Calculation:

\(3\sin x = 3x - \frac{{3{x^3}}}{{3!}} + \frac{{3{x^5}}}{{5!}} + \ldots \)

\(3\sin x = 3x - \frac{{{x^3}}}{{2!}} + \frac{{{x^5}}}{{40}} - \ldots \)          ---(1)

Similarly,

\(2\cos x = 2 - \frac{{2{x^2}}}{{2!}} + \frac{{2{x^4}}}{{4!}} - \frac{{2{x^6}}}{{6!}} + \ldots \)

 \(2\cos x = 2 - {x^2} + \frac{{{x^4}}}{{12}} - \ldots \)        ---(2)

Adding equation (1) and equation (2), we get:

\(3\sin x + \cos x = 2 + 3x - {x^2} - \frac{{{x^3}}}{2} + \ldots \)

The series expansion of \(\frac{{\sin x}}{x}\)  near origin is

  1. \(1 + \frac{{{x^3}}}{{3!}} + \ldots \)
  2. \(1 - \frac{{{x^3}}}{{3!}} + \ldots \)
  3. \(1 - \frac{{{x^2}}}{6} + \ldots \)
  4. \(x - \frac{{{x^3}}}{{3!}} + \ldots \)

Answer (Detailed Solution Below)

Option 3 : \(1 - \frac{{{x^2}}}{6} + \ldots \)

Taylor's Series Question 10 Detailed Solution

Download Solution PDF

Concept:

Taylor series:

The Taylor series of a real or complex-valued function f (x) that is infinitely differentiable at a real or complex number ‘a’ is the power series.

Expression of Taylor series is:

\(f\left( x \right) = f\left( a \right) + \frac{{f'\left( a \right)}}{{1!}}\left( {x - a} \right) + \frac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + \frac{{f'''\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \; \ldots \ldots \)

Calculation:

Given:

We have to find the series expansion of \(\frac{{\sin x}}{x}\) near origin, or a = 0.

Let f(x) = sin x

f(0) = sin (0) = 0,

f'(0) = cos (0) = 1,

f''(0) = -sin(0) = 0,

f'''(0) = -1 .... so on

Putting all the values in Taylor series expansion, we get:

Series expansion of sin x  will be:

\(sinx=x - \frac{{{x^3}}}{{3!}} + \ldots \)

Therefore the series expansion of \(\frac{{\sin x}}{x}\) near origin will be:

\(\frac{sinx}{x}=1 - \frac{{{x^2}}}{{6}} + \ldots \)

Let \(f\left( x \right) = \frac{{\sin \left( x \right)}}{{x - 54}}\). Then f(100)(54) is given by

  1. Undefined 
  2. 100
  3. 10
  4. 0

Answer (Detailed Solution Below)

Option 1 : Undefined 

Taylor's Series Question 11 Detailed Solution

Download Solution PDF

Concept:

Taylor’s series method:

The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and all of its derivatives, are known at a single point.

Taylor's series expansion for f (x + h) is

\(f\left( {x + h} \right) = f\left( x \right) + hf'\left( x \right) + \frac{{{h^2}}}{{2!}}f''\left( x \right) + \frac{{{h^3}}}{{3!}} + f'''\left( x \right) + \ldots \infty \)

\(f(x)=f(a)\;+\;(x-a)f'(x)\;+\;\frac{(x-a)^2}{2!}f''(x)\;+\;........\infty\)

Calculation:

Given:

\(f\left( x \right) = \frac{{\sin \left( x \right)}}{{x - 54}}\)

f(100)(54) = ?

Using Taylor series expansion for Sin x at a = 54

\(f(x)=f(a)\;+\;(x-a)f'(x)\;+\;\frac{(x-a)^2}{2!}f''(x)\;+\;........\infty\)

\(\sin x~=~\sin (54)~+~\frac{(x~-~54)~\times~\cos (54)}{1!}~-~\frac{(x~-~54)^2~\times~\cos (54)}{2!}~-~.............\infty\)

Now the function transforms into:

f(x) = \(\frac{\sin (54)}{x~-~54}~+~\frac{\cos (54)}{1!}~-~\frac{(x~-~54)~\times~\cos (54)}{2!}~-~.............\infty\)

After Observing carefully the first term in the above infinite series, the (x - 54) term is always in the denominator, which will become zero when we put x = 54.

Every derivative will also have the same term till infinite.

So, every term will have zero in its denominator after putting x = 54.

⇒ f(100)(54) is Undefined.

Which of the following is not true?

  1. \(\log \left( {1 + z} \right) = z - \frac{{{z^2}}}{2} + \frac{{{z^3}}}{3} - \frac{{{z^4}}}{4} + \ldots ..\)about z = 0
  2. \(\frac{z}{{\left( {z + 1} \right)\left( {z + 2} \right)}} = \left( {\frac{1}{2} - \frac{1}{3}} \right) - \left( {\frac{1}{{{2^3}}} - \frac{1}{{{3^2}}}} \right)\left( {z - 2} \right) + \left( {\frac{1}{{{2^5}}} - \frac{1}{{{3^3}}}} \right){\left( {z - 2} \right)^2} + \ldots \ldots \)about z = 2
  3. \(\mathop \oint \limits_C^{} \frac{{{e^z}}}{{{{\left( {z + 4} \right)}^2}}}dz = 0\) where C is the circle |z-1| = 2
  4. \(f\left( z \right) = \frac{{\left( {z - 1} \right)}}{{z\left( {{z^2} - 1} \right)}}\;\) has no singularity

Answer (Detailed Solution Below)

Option 4 : \(f\left( z \right) = \frac{{\left( {z - 1} \right)}}{{z\left( {{z^2} - 1} \right)}}\;\) has no singularity

Taylor's Series Question 12 Detailed Solution

Download Solution PDF

Concept:

Taylor series expansion

\(\begin{array}{l} f\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \frac{{{f^{\left( n \right)}}\left( a \right)}}{{n!}}{\left( {x - a} \right)^n}\\ f\left( x \right) = f\left( a \right) + {f^I}\left( a \right)\left( {x - a} \right) + \frac{{{f^{II}}\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + \frac{{{f^{III}}\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \ldots \end{array}\)
 
Explanation:
 
Option 1:
The standard expansion of log(1 + z) is given as 
\(log (1 + z) = \left[ {z - \frac{{{z^2}}}{2} + \frac{{{z^3}}}{3} - \frac{{{z^4}}}{4} \ldots } \right]\)
Hence, Option 1 is true
Option 2:

Given complex function is \(f\left( t \right) = \frac{t}{{\left( {z + 1} \right)\left( {z + 2} \right)}}\) 

→ Let’s Resolve f(z) into partial fractions

⇒ \(\frac{z}{{\left( {s + 1} \right)\left( {s + 2} \right)}} = \frac{A}{{z + 1}} + \frac{B}{{z + 2}}\)

⇒ A = -1, B = 2

⇒ \(f\left( z \right) = \frac{{ - 1}}{{z + 1}} + \frac{2}{{z + 2}}\)

For expanding about z = 2, let z – 2 = t ⇒ z = 2 + t

⇒ \(f\left( z \right) = \frac{{ - 1}}{{3 + t}} + \frac{2}{{4 + t}}\)

⇒ \(f\left( z \right) = \frac{{ - 1}}{3}{\left( {1 + \frac{t}{3}} \right)^{ - 1}} + \frac{2}{4}{\left( {1 + \frac{t}{4}} \right)^{ - 1}}\)

⇒ \(f\left( z \right) = \frac{{ - 1}}{3}\left[ {1 - \frac{t}{3} + \frac{{{t^2}}}{{{3^2}}} - \frac{{{t^3}}}{{{3^3}}} + \ldots } \right] + \frac{1}{2}\left[ {1 - \frac{t}{4} + \frac{{{t^2}}}{{{4^2}}} - \frac{{{t^3}}}{{{4^3}}} + \ldots } \right]\)

⇒ \(f\left( t \right) = \left( {\frac{1}{2} - \frac{1}{3}} \right) - \left( {\frac{t}{{{2^3}}} - \frac{t}{{{3^2}}}} \right) + \left( {\frac{{{t^2}}}{{{2^5}}} - \frac{{{t^2}}}{{{3^3}}}} \right) + \ldots \)

⇒ \(f\left( t \right) = \left( {\frac{1}{2} - \frac{1}{3}} \right) - \left( {\frac{1}{{{2^3}}} - \frac{1}{{{3^2}}}} \right)\left( {z - 2} \right) + \left( {\frac{1}{{{2^5}}} - \frac{1}{{{3^3}}}} \right){\left( {z - 2} \right)^2} + \ldots \)

Option 3:

Cauchy’s Integral Formula:

If f(z) is an analytic function within a closed curve and if a is any point within C, then

\(f\left( a \right) = \frac{1}{{2\pi i}}\mathop \oint \limits_C \frac{{f\left( z \right)}}{{z - a}}dz\)

\({f^n}\left( a \right) = \frac{{n!}}{{2\pi i}}\mathop \oint \limits_C \frac{{f\left( z \right)}}{{{{\left( {z - a} \right)}^{n + 1}}}}dz\)

Residue Theorem:

If f(z) is analytic in a closed curve C except at a finite number of singular points within C, then

\(\mathop \smallint \limits_C f\left( z \right)dz = 2\pi i \times \left[ {{\rm{sum\;of\;residues\;at\;the\;singualr\;points\;within\;C}}} \right]\)

Formula to find residue:

1. If f(z) has a simple pole at z = a, then

\(Res\;f\left( a \right) = \mathop {\lim }\limits_{z \to a} \left[ {\left( {z - a} \right)f\left( z \right)} \right]\)

2. If f(z) has a pole of order n at z = a, then

\(Res\;f\left( a \right) = \frac{1}{{\left( {n - 1} \right)!}}{\left\{ {\frac{{{d^{n - 1}}}}{{d{z^{n - 1}}}}\left[ {{{\left( {z - a} \right)}^n}f\left( z \right)} \right]} \right\}_{z = a}}\)

Given complex integral is 

\(\mathop \oint \limits_C^{} \frac{{{e^z}}}{{{{\left( {z + 4} \right)}^2}}}dz = 0\) where Cis the circle |z-1| = 2;

Now for the given complex function, the pole is -4 with order 2;

The pole - 4 lies outside the given circle C;

Therefore, no residue inside the circle, hence integration will be zero.

Option 3 is also correct

Option 4:

The given complex function is \(f\left( z \right) = \frac{{\left( {z - 1} \right)}}{{z\left( {{z^2} - 1} \right)}}\;\)

In this function, the singularities are z = 0, +i, -i;

Therefore, the given function has 3 singularities...

Option 4 is incorrect

The value of y at x = 0.1 to five places of decimals, by Taylor's series method, given that \(\frac{dy}{dx}=x^2y-1, y(0)=1\), is

  1. 0.68281
  2. 0.81122
  3. 0.90033
  4. 0.70127

Answer (Detailed Solution Below)

Option 3 : 0.90033

Taylor's Series Question 13 Detailed Solution

Download Solution PDF

\(\frac{dy}{dx}=x^2y-1\), y(0) = 1, y(0, 1) = ?

Here, x0 = 0, y0 = 1, h = 0.1 so y(0, 1) = y1 = ?

Here, yI(x) = x2y - 1

⇒ yI(0) = -1

yII(x) = 2xy + x2yI

⇒ yII(0) = 0

yIII(x) = 2y + 2xyI + 2xyI + x2yII

⇒ yIII(0) = 2

yIV(x) = 2yI + 4(xyII + yI) + 2xyII + x2yIII

⇒ yIV(0) = -6 and so on......

Hence by Taylor series:

\(y_1=y_0+hy^I(0)+\frac{h^2}{2!}y^{II}(0)+\frac{h^3}{3!}y^{III}(0)+\frac{h^4}{4!}y^{IV}(0)+....\)

\(1+0.1(-1)+\frac{(0.1)^2}{2!}(0)+\frac{(0.1)^3}{3!}(2)+\frac{(0.1)^4}{4!}(-6)+.....\)

1 - 0.1 + 0 + 0.00033 + ......

= 0.90031 ≈ 0.90033

The Maclaurin's series expansion of esin x is

  1. \(1+x-\frac{x^2}{2}+\frac{x^4}{12}-....\)
  2. \(1-x+\frac{x^2}{2}-\frac{x^4}{8}+....\)
  3. \(1+x+\frac{x^2}{2}-\frac{x^4}{8}+....\)
  4. \(1+x+\frac{x^2}{2}-\frac{x^4}{12}+....\)

Answer (Detailed Solution Below)

Option 3 : \(1+x+\frac{x^2}{2}-\frac{x^4}{8}+....\)

Taylor's Series Question 14 Detailed Solution

Download Solution PDF

f(x) = esin x ⇒ f(0) = e0 = 1

f'(x) = esin x (cos x) ⇒ f'(0) = 1

f''(x) = esin x cos2x + esin x (-sin x)

f''(0) = 1

= esin x [cos2x - sin x]

f'''(x) = esin x [-sin 2x - cos x] + esin x  [cos3x - sin x cos x]

f'''(x) = -1 + 1 = 0

fiv(x) = esin x  [-2 cos 2x + sin x] + esin x  cos x [-sin 2x - cos x]

\(+ e^{\sin x } \left[ 3 \cos^2 x (-\sin x) - \frac{\cos 2x}{2} \times 2 \right]\)

+ esin x [cos4 x - sin x cos2 x]

fiv(0) = -2 -1 -1 + 1 = -3

Substitue in Maclaurin Series

\(e^{\sin x} = 1 + x + \frac{x^2}{2 } + \frac{x^3}{3!} (0) + \frac{x^4}{4!} \times (-3) + ....\)

\(= 1+ x + \frac{x^2}{2} - \frac{x^4}{8} + ....\)

Taylor's Series Question 15:

The expansion of f(x) = ex cos x at x = 0

  1. \(1 + x - \frac{{2{x^3}}}{{3!}} + \ldots \)
  2. \(1 + x - \frac{{{x^3}}}{{3!}} + \ldots \)
  3. \(1 + x - \frac{{{x^2}}}{{2!}} + \ldots \)
  4. \(1 + x - \frac{{2{x^2}}}{{2!}} + \ldots \)

Answer (Detailed Solution Below)

Option 1 : \(1 + x - \frac{{2{x^3}}}{{3!}} + \ldots \)

Taylor's Series Question 15 Detailed Solution

Concept:

Taylor series expansion for sin x and cos x are respectively:

\(\sin x = x - \frac{{{x^3}}}{{3!}} + \frac{{{x^5}}}{{5!}} - \frac{{{x^7}}}{{7!}} + \ldots - \infty < x < \infty \)

\(\cos x = 1 - \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}} - \frac{{{x^6}}}{{6!}} + \ldots - \infty < x < \infty \)

Calculation:

For option (1)

f(0) =e0  cos θ = 1

 f’(x) = ex (- sin x) + cos x  ex

 f’(x) = f(x) - ex  sin x

 f’’(x) = f’(x) - ex  x - ex sin x

⇒ f''(x) = f'(x) - f(x) - ex sin x

⇒ f'''(x) = f''(x) - f'(x) - ex cos x - ex sin x

⇒ f'''(x) = f''(x) - f'(x) - f(x) - ex sin x

Now,

f’(0) = 1 - 0 = 1

f’’(0) = f’(0) - e0 (1) - 0 = 1 - 1 = 0

f’’’(0) = f’’(0) f’(0) - 1 - 0

= 1 - 1 - 1 = -2

Taylor series expansion at x = 0 is

\(f\left( x \right) = f\left( 0 \right) + x\;f'\left( 0 \right) + \frac{{{x^2}}}{{2!}}f''\left( 0 \right) + \frac{{{x^3}}}{{3!}}f'''\left( 0 \right)\)

\(f\left( x \right) = 1 + x - \frac{2}{{3!}}{x^3} + \ldots \)
Get Free Access Now
Hot Links: teen patti all games teen patti jodi teen patti gold old version teen patti noble teen patti master update