Complex Number elements MCQ Quiz - Objective Question with Answer for Complex Number elements - Download Free PDF
Last updated on May 1, 2025
Latest Complex Number elements MCQ Objective Questions
Complex Number elements Question 1:
If \(x+iy=\begin{vmatrix}6i & -3i & 1 \\\ 4 & 3i & -1 \\\ 20 & 3 & i \end{vmatrix}\) then what is x - iy equal to?
Answer (Detailed Solution Below)
Complex Number elements Question 1 Detailed Solution
Concept:
i2 = - 1
Calculations:
Given, \(x+iy=\begin{vmatrix}6i & -3i & 1 \\\ 4 & 3i & -1 \\\ 20 & 3 & i \end{vmatrix}\)
⇒ x + iy = 6i (3i2 + 3) + 3i (4i + 20) + 1(12 - 60i)
⇒ x + iy = 6i (3i2 + 3) + 12i2 + 60i + 12 - 60i
We know that i2 = - 1
⇒ x + iy = 6i [3(-1)+3] +12(-1) + 60i + 12 - 60i
⇒ x + iy = 0
⇒ x + iy = 0 + i 0
⇒ x = 0 and y = 0
Consider, x - iy
Put the value of x and y in above expression, we get
⇒ x - iy = 0 - i0
⇒ x - iy = 0
Hint
To find the value of x - iy, find the value of x and y.
To find the value of x and y, solve the given determinant and compare the real and imaginary part.
Complex Number elements Question 2:
If ω is the cube root of unity, then \(\begin{vmatrix} 1&\omega&\omega^2 \\\ \omega&\omega^2&1 \\\ \omega^2&1&\omega \end{vmatrix}=\ ?\)
Answer (Detailed Solution Below)
Complex Number elements Question 2 Detailed Solution
Concept:
Since ω is the cube root of unity,
Thus, ω3 = 1 and ω4 = ω.
Explanation:
We are given \(\begin{vmatrix} 1&\omega&\omega^2 \\\ \omega&\omega^2&1 \\\ \omega^2&1&\omega \end{vmatrix}\) i.e. (Taking determinant about first row), We get,
\(\begin{vmatrix} 1&\omega&\omega^2 \\\ \omega&\omega^2&1 \\\ \omega^2&1&\omega \end{vmatrix}\)
⇒ 1(ω3 - 1) - ω(ω2 - ω2) + ω2(ω - ω4) ....(ω3 = 1 and ω4 = ω.)
⇒ 1(1 - 1) - (0) + ω2(ω - ω)
⇒ 0
Complex Number elements Question 3:
If ω is a cube roots of unity, then \(\left| {\begin{array}{*{20}{c}}1&ω^3&ω^2\\ ω^3&1&ω\\ ω^2&ω&1 \end{array}} \right|\)=
Answer (Detailed Solution Below)
Complex Number elements Question 3 Detailed Solution
Concept:
- The cube root of unity has three roots, which are 1, ω, ω2.
- Here the roots ω and ω2 are imaginary roots and one root is a square of the other root.
- The product of the imaginary roots of the cube root of unity is equal to 1 (ω.ω2 = ω3 = 1), and
- The sum of the cube roots of unity is equal to zero.(1 + ω + ω2 = 0).
Calculations:
Given \(\left| {\begin{array}{*{20}{c}}1&ω^3&ω^2\\ ω^3&1&ω\\ ω^2&ω&1 \end{array}} \right|\) = \(\left| {\begin{array}{*{20}{c}}1&1&ω^2\\ 1&1&ω\\ ω^2&ω&1 \end{array}} \right|\) [ ∵ ω.ω2 = ω3 = 1]
Applying R1 → R1 + R2 + R3 , we get
⇒ \(\left| {\begin{array}{*{20}{c}}2+ω^2&2+ω&0\\ 1&1&ω\\ ω^2&ω&1 \end{array}} \right|\) [∵ 1 + ω + ω2 = 0]
Applying C1 → C1 + C2 + C3, we get
⇒ \(\left| {\begin{array}{*{20}{c}}4+ω+ω^2&2+ω&0\\ 2+ω&1&ω\\ 0&ω&1 \end{array}} \right|\)
⇒ \(\left| {\begin{array}{*{20}{c}}3&2+ω&0\\ 2+ω&1&ω\\ 0&ω&1 \end{array}} \right|\)
On simplification, we get
⇒ 3 [1 - w2] - (2 + w) [(2 + w) - 0]
⇒ 3 - 3w2 - 4 - w2 - 4w
⇒ 3 - 4 - 4w - 4w2
⇒ 3 - 4(1 + ω + ω2)
⇒ 3 - 0 = 3
Hence, the correct answer is option 4).
Complex Number elements Question 4:
What is the value of \(\begin{vmatrix}1-i&ω^2&-ω\\\ ω^2+i&ω&-i\\\ 1-2i-ω^2&ω^2-ω&i-ω\end{vmatrix}\) where ω is the cube root of unity?
Answer (Detailed Solution Below)
Complex Number elements Question 4 Detailed Solution
Concept:
If ω is the cube root of unity, then
ω3 = 1 and 1 + ω + ω2 = 0
Applying Row operation Rj → Rj + t.Rk (t is a real number) does not change the value of the determinant.
Where Rj denotes the j-th row of the matrix
If any row or column of the matrix has all zero elements, then the determinant of that matrix is 0.
Calculation:
\(\begin{vmatrix}1-i&ω^2&-ω\\\ ω^2+i&ω&-i\\\ 1-2i-ω^2&ω^2-ω&i-ω\end{vmatrix}\)
Applying R3 → R3 + R2
\(\begin{vmatrix}1-i&ω^2&-ω\\\ ω^2+i&ω&-i\\\ 1-2i-ω^2+\omega^2+i&ω^2-ω+\omega&i-ω-i\end{vmatrix}\)
\(\begin{vmatrix}1-i&ω^2&-ω\\\ ω^2+i&ω&-i\\\ 1-i&ω^2&-ω\end{vmatrix}\)
Applying R3 → R3 - R1
\(\begin{vmatrix}1-i&ω^2&-ω\\\ ω^2+i&ω&-i\\\ 1-i-1+i&ω^2-\omega^2&-ω+\omega\end{vmatrix}\)
\(\begin{vmatrix}1-i&ω^2&-ω\\\ ω^2+i&ω&-i\\\ 0&0&0\end{vmatrix}\) = 0
∴ \(\begin{vmatrix}1-i&ω^2&-ω\\\ ω^2+i&ω&-i\\\ 1-2i-ω^2&ω^2-ω&i-ω\end{vmatrix}\) = 0
Complex Number elements Question 5:
The smallest positive integer n for which
\(\rm \left(\frac{1-i}{1+i}\right)^{n^2}=1\)
where i = √-1, is
Answer (Detailed Solution Below)
Complex Number elements Question 5 Detailed Solution
Concept:
(i)2 = 1
(-i)4 = 1
Calculation:
\(\rm \left(\frac{1-i}{1+i}\right)^{n^2}=1\)
On rationalizing,
\(\rm \left (\frac{1 - i}{1 + i} \times \frac{1 - i}{1 - i} \right )^{n^{2}}\)= 1
\(\rm \left (\frac{(1 - i)^{2}}{1 - i^{2}} \right )^{n^{2}}\) = 1
\(\rm \left (\frac{1 + i^{2} - 2i}{1 - (-1)} \right )^{n^{2}}\) = 1
\(\rm \left (\frac{1 - 1 - 2i}{1 + 1} \right )^{n^{2}}\) = 1
\(\rm \left (\frac{- 2i}{2} \right )^{n^{2}}\)= 1
\(\rm \left (- i \right )^{n^{2}} \) = 1
if we put n = 2 then,
\(\rm \left (- i \right )^{n^{2}} \) = 1
Satisfy the equation.
Hence, Option 1 is correct.
Top Complex Number elements MCQ Objective Questions
What is the value of the determinant \(\left| {\begin{array}{*{20}{c}} {\rm{i}}&{{{\rm{i}}^2}}&{{{\rm{i}}^3}}\\ {{{\rm{i}}^4}}&{{{\rm{i}}^6}}&{{{\rm{i}}^8}}\\ {{{\rm{i}}^9}}&{{{\rm{i}}^{12}}}&{{{\rm{i}}^{15}}} \end{array}} \right|\) where \(\rm i = \sqrt {-1}\) ?
Answer (Detailed Solution Below)
Complex Number elements Question 6 Detailed Solution
Download Solution PDFConcept:
\(\rm i = \sqrt {-1}\)
i2 = -1 , i3 = - i, i4 = 1, i6 = - 1 , i8 = 1 , i9 = i, i 12 = 1, and i15 = - i
Calculations:
Given determinant is \(\left| {\begin{array}{*{20}{c}} {\rm{i}}&{{{\rm{i}}^2}}&{{{\rm{i}}^3}}\\ {{{\rm{i}}^4}}&{{{\rm{i}}^6}}&{{{\rm{i}}^8}}\\ {{{\rm{i}}^9}}&{{{\rm{i}}^{12}}}&{{{\rm{i}}^{15}}} \end{array}} \right|\)
Since, we have,
\(\rm i = \sqrt {-1}\)
i2 = -1 , i3 = - i, i4 = 1, i6 = - 1 , i8 = 1 , i9 = i, i 12 = 1, and i15 = - i
=\(\left| {\begin{array}{*{20}{c}} {\rm{i}}&{{{\rm{-1}}}}&{{{\rm{-i}}}}\\ {{{\rm{1}}}}&{{{\rm{-1}}}}&{{{\rm{1}}}}\\ {{{\rm{i}}}}&{{{\rm{1}}}}&{{{\rm{-i}}}} \end{array}} \right|\)
=i(i - 1) + 1(-i - i) - i (1 + i)
= i2 - i - 2i - i - i2
= - 4i
The value of \(\left| {\begin{array}{*{20}{c}} {2 + i}&{2 - i}\\ {1 + i}&{i - 1} \end{array}} \right|\)
Answer (Detailed Solution Below)
Complex Number elements Question 7 Detailed Solution
Download Solution PDFConcept:
If \(A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right]\) then determinant of A is given by: |A| = (a11 × a22) – (a12 – a21).
Calculation:
Let, \({\rm{A}} = \left| {\begin{array}{*{20}{c}} {2 + i}&{2 - i}\\ {1 + i}&{i - 1} \end{array}} \right|\)
⇒ |A| = (2 + i) (i – 1) – (2 – i) (1 + i)
= 2i + i2 – 2 – i – (2 – i + 2i – i2)
= i – 1 – 2 – (2 + i + 1) (∵ i2 = -1)
= i – 3 – 2 – i – 1
= -6
∴ |A| is real number.
If \(\left| {\begin{array}{*{20}{c}} {\rm{x}}&{\rm{y}}&0\\ 0&{\rm{x}}&{\rm{y}}\\ {\rm{y}}&0&{\rm{x}} \end{array}} \right| = 0\), then which one of the following is correct?
Answer (Detailed Solution Below)
Complex Number elements Question 8 Detailed Solution
Download Solution PDFConcept:
If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_{11}}}&{{{\rm{a}}_{12}}}&{{{\rm{a}}_{13}}}\\ {{{\rm{a}}_{21}}}&{{{\rm{a}}_{22}}}&{{{\rm{a}}_{23}}}\\ {{{\rm{a}}_{31}}}&{{{\rm{a}}_{32}}}&{{{\rm{a}}_{33}}} \end{array}} \right]\) then determinant of A is given by:
|A| = a11 × {(a22 × a33) – (a23 × a32)} - a12 × {(a21 × a33) – (a23 × a31)} + a13 × {(a21 × a32) – (a22 × a31)}
Calculation:
Given:
\(\left| {\begin{array}{*{20}{c}} {\rm{x}}&{\rm{y}}&0\\ 0&{\rm{x}}&{\rm{y}}\\ {\rm{y}}&0&{\rm{x}} \end{array}} \right| = 0\)
Expanding along R1, we get
⇒ x (x2 – 0) – y (0 – y2) + 0 = 0
⇒ x3 + y3 = 0
\(\Rightarrow {\rm{\;}}{{\rm{y}}^3}{\rm{\;}}\left( {\frac{{{{\rm{x}}^3}}}{{{{\rm{y}}^3}}}{\rm{\;}} + {\rm{\;}}1} \right){\rm{\;}} = {\rm{\;}}0{\rm{\;}}\)
\(\therefore \left( {\frac{{{{\rm{x}}^3}}}{{{{\rm{y}}^3}}}{\rm{\;}} + {\rm{\;}}1} \right) = {\rm{\;}}0{\rm{\;and\;}}{{\rm{y}}^3} \ne 0\)
\(\Rightarrow \frac{{{{\rm{x}}^3}}}{{{{\rm{y}}^3}}}{\rm{\;}} = {\rm{}} - 1\)
\(\Rightarrow \frac{{\rm{x}}}{{\rm{y}}} = {\left( { - 1} \right)^{\frac{1}{3}}}\)
Hence x/y is one of the cube roots of -1
If ω is the cube root of unity, then what is the value of
\(\rm\begin{vmatrix} 1 & \omega &\omega^2 \\ \omega & \omega^2 &1 \\ \omega^2& 1 & \omega \end{vmatrix}\)
Answer (Detailed Solution Below)
Complex Number elements Question 9 Detailed Solution
Download Solution PDFConcept:
If the 1, ω and ω2 are the cube roots of unity, then 1 + ω + ω2 = 0
If any row and column have all the elements as zero in the square matrix, then the determinant is zero.
Calculation:
D = \(\rm\begin{vmatrix} 1 & ω &ω^2 \\ ω & ω^2 &1 \\ ω^2& 1 & ω \end{vmatrix}\)
R3 = R3 + R1 + R2
D = \(\rm\begin{vmatrix} 1 & ω &1+ω+ω^2 \\ ω & ω^2 &1+ω+ω^2 \\ ω^2& 1 & 1+ω+ω^2 \end{vmatrix}\)
D = \(\rm\begin{vmatrix} 1 & ω &0 \\ ω & ω^2 &0 \\ ω^2& 1 & 0 \end{vmatrix}\) = 0
If \(x+iy=\begin{vmatrix}6i & -3i & 1 \\\ 4 & 3i & -1 \\\ 20 & 3 & i \end{vmatrix}\) then what is x - iy equal to?
Answer (Detailed Solution Below)
Complex Number elements Question 10 Detailed Solution
Download Solution PDFConcept:
i2 = - 1
Calculations:
Given, \(x+iy=\begin{vmatrix}6i & -3i & 1 \\\ 4 & 3i & -1 \\\ 20 & 3 & i \end{vmatrix}\)
⇒ x + iy = 6i (3i2 + 3) + 3i (4i + 20) + 1(12 - 60i)
⇒ x + iy = 6i (3i2 + 3) + 12i2 + 60i + 12 - 60i
We know that i2 = - 1
⇒ x + iy = 6i [3(-1)+3] +12(-1) + 60i + 12 - 60i
⇒ x + iy = 0
⇒ x + iy = 0 + i 0
⇒ x = 0 and y = 0
Consider, x - iy
Put the value of x and y in above expression, we get
⇒ x - iy = 0 - i0
⇒ x - iy = 0
Hint
To find the value of x - iy, find the value of x and y.
To find the value of x and y, solve the given determinant and compare the real and imaginary part.
If ω is a cube root of unity, then find the value of the determinant \(\rm \begin{vmatrix} 1 + \omega & \omega^2 & -\omega \\\ 1 + \omega^2 & \omega & -\omega^2 \\\ \omega^2 + \omega & \omega & -\omega^2 \end{vmatrix}\) is
Answer (Detailed Solution Below)
Complex Number elements Question 11 Detailed Solution
Download Solution PDFConcept:
ω is a cube root of unity.
Property of cube root of unity:
- ω3 = 1
- 1 + ω + ω2 = 0
Calculations:
Given, ω is a cube root of unity.
⇒ω3 = 1, ad 1 + ω + ω2 = 0
Now, consider the determinant
\(\rm \begin{vmatrix} 1 + ω & ω^2 & -ω \\\ 1 + ω^2 & ω & -ω^2 \\\ ω^2 + ω & ω & -ω^2 \end{vmatrix}\)
Taking ω and -ω common from C2 and C3 respectively,
= \(\rm-ω^2 \begin{vmatrix} 1 + ω & ω & 1\\\ 1 + ω^2 &1 & ω \\\ ω^2 + ω & 1& ω \end{vmatrix}\)
= \(\rm -ω^2 [(1+ω)(ω-ω)-ω(ω +1-1-ω^2)+(1+ω^2-ω^2-ω)]\)
= \(\rm -ω^2 [-ω^2+1+1-ω]\)
= \(\rm ω -2ω^2+ 1\)
= \(\rm 1+ ω + ω^2-3ω^2\)
= 0 - 3ω2
= - 3ω2
Hence the required value is -3ω2
The smallest positive integer n for which
\(\rm \left(\frac{1-i}{1+i}\right)^{n^2}=1\)
where i = √-1, is
Answer (Detailed Solution Below)
Complex Number elements Question 12 Detailed Solution
Download Solution PDFConcept:
(i)2 = 1
(-i)4 = 1
Calculation:
\(\rm \left(\frac{1-i}{1+i}\right)^{n^2}=1\)
On rationalizing,
\(\rm \left (\frac{1 - i}{1 + i} \times \frac{1 - i}{1 - i} \right )^{n^{2}}\)= 1
\(\rm \left (\frac{(1 - i)^{2}}{1 - i^{2}} \right )^{n^{2}}\) = 1
\(\rm \left (\frac{1 + i^{2} - 2i}{1 - (-1)} \right )^{n^{2}}\) = 1
\(\rm \left (\frac{1 - 1 - 2i}{1 + 1} \right )^{n^{2}}\) = 1
\(\rm \left (\frac{- 2i}{2} \right )^{n^{2}}\)= 1
\(\rm \left (- i \right )^{n^{2}} \) = 1
if we put n = 2 then,
\(\rm \left (- i \right )^{n^{2}} \) = 1
Satisfy the equation.
Hence, Option 1 is correct.
If \(\left| {\begin{array}{*{20}{c}} x&-3i&1\\ y&1&{i}\\ 0&2i&-i \end{array}} \right|=6+11i\) , then what are the values of x and y respectively?
Answer (Detailed Solution Below)
Complex Number elements Question 13 Detailed Solution
Download Solution PDFCalculation:
Given: \(\left| {\begin{array}{*{20}{c}} x&-3i&1\\ y&1&{i}\\ 0&2i&-i \end{array}} \right|=6+11i\)
Let \(A=\left| {\begin{array}{*{20}{c}} x&-3i&1\\ y&1&{i}\\ 0&2i&-i \end{array}} \right|\)
⇒ det A = x[-i - 2i2] - (-3i)[-yi - 0] + 1[2yi - 0]
As we know that, i2 = -1
det A = x[-i + 2] + 3i[-yi] + [2yi]
det A = -ix + 2x + 3y + 2yi
det A = (2x + 3y) + (2y - x)i
According to the question,
det A = 6 + 11i
(2x + 3y) + (2y - x)i = 6 + 11i
⇒ 2x + 3y = 6 and 2y – x = 11
Solving the above equations we get
⇒ x = - 3, y = 4(cos 5θ - i sin 5θ)2 is same as
Answer (Detailed Solution Below)
Complex Number elements Question 14 Detailed Solution
Download Solution PDFConcept:
If r(cos θ + i sin θ) is a complex number then:
{r (cos θ + i sin θ)}n = rn (cos nθ + i sin nθ)
Calculation:
Given:
(cos 5θ – i sin 5θ)2 = z
Using identity
Z = {cos (10 θ) – i sin (10 θ)}
z = (cos θ + i sin θ)– 10
Additional Information
DERIVATION:
De Moivre’s theorem
Prove by induction z = r(cos θ + i sin θ)
⇒ zn = rn (cos nθ + i sin nθ)
Step 1:
Show true for n = 1; z1 = r1 (cos θ + i sin θ)
Step 2:
Assume true for n = k; zk = rk (cos kθ + i sin kθ)
Step 3:
Prove true for n = k + 1
zk + 1 = zk z1 = rk (cos kθ + i sin kθ) × r(cos θ + i sin θ)
= rk + 1 (cos (kθ + θ) + i sin (kθ + θ))
⇒ zk + 1 = rk + 1 (cos (k + 1)θ + i sin (k + 1)θ)
Step 4:
Conclusion
By induction, the statement is true ∀ n ≥ 1, n ϵ N
If ω is the cube root of unity, then what is the value of
\(\rm\begin{vmatrix} 1 & \omega &\omega^2 \\ \omega & \omega^2 &1 \\ \omega^2& 1 & \omega \end{vmatrix}\)
Answer (Detailed Solution Below)
Complex Number elements Question 15 Detailed Solution
Download Solution PDFConcept:
If the 1, ω and ω2 are the cube roots of unity, then 1 + ω + ω2 = 0
If any row and column have all the elements as zero in the square matrix, then the determinant is zero.
Calculation:
D = \(\rm\begin{vmatrix} 1 & ω &ω^2 \\ ω & ω^2 &1 \\ ω^2& 1 & ω \end{vmatrix}\)
R3 = R3 + R1 + R2
D = \(\rm\begin{vmatrix} 1 & ω &1+ω+ω^2 \\ ω & ω^2 &1+ω+ω^2 \\ ω^2& 1 & 1+ω+ω^2 \end{vmatrix}\)
D = \(\rm\begin{vmatrix} 1 & ω &0 \\ ω & ω^2 &0 \\ ω^2& 1 & 0 \end{vmatrix}\) = 0