Analytical Method of Analysis MCQ Quiz - Objective Question with Answer for Analytical Method of Analysis - Download Free PDF

Last updated on Jun 11, 2025

Latest Analytical Method of Analysis MCQ Objective Questions

Analytical Method of Analysis Question 1:

When a body is subjected to bi-axial stress, i.e. direct stress (P1) and (P2) in two mutually perpendicular planes accompanied by a simple shear stress (q), then maximum normal stress is 

  1. \(\rm \frac{P_1-P_2}{2}+\frac{1}{2} \sqrt{\left(P_1+P_2\right)^2+4 q^2} \)
  2. \( \rm \frac{P_1-P_2}{2}-\frac{1}{2} \sqrt{\left(P_1+P_2\right)^2+4 q^2}\)
  3. \( \rm \frac{P_1+P_2}{2}-\frac{1}{2} \sqrt{\left(P_1-P_2\right)^2+4 q^2} \)
  4. \(\rm \frac{P_1+P_2}{2}+\frac{1}{2} \sqrt{\left(P_1-P_2\right)^2+4 q^2}\)

Answer (Detailed Solution Below)

Option 4 : \(\rm \frac{P_1+P_2}{2}+\frac{1}{2} \sqrt{\left(P_1-P_2\right)^2+4 q^2}\)

Analytical Method of Analysis Question 1 Detailed Solution

Concept:

When a body is subjected to bi-axial stresses (direct stresses P1 and P2 ) along with a shear stress q , the maximum and minimum normal stresses can be determined using stress transformation equations. The maximum normal stress is particularly important for failure analysis.

Given:

  • Direct stress in the first direction, \( P_1 \)
  • Direct stress in the second direction, \( P_2 \)
  • Shear stress, \( q \)

Step 1: Understand the Stress State

The given stress state consists of two normal stresses P1 and P2 acting in mutually perpendicular directions, along with a shear stress q .

Step 2: Use the Formula for Principal Stresses

The maximum and minimum normal stresses (principal stresses) are given by:

\[ \sigma_{\text{max}}, \sigma_{\text{min}} = \frac{P_1 + P_2}{2} \pm \frac{1}{2} \sqrt{(P_1 - P_2)^2 + 4q^2} \]

Step 3: Identify the Maximum Normal Stress

The maximum normal stress corresponds to the positive root of the expression:

\[ \sigma_{\text{max}} = \frac{P_1 + P_2}{2} + \frac{1}{2} \sqrt{(P_1 - P_2)^2 + 4q^2} \]

 

Analytical Method of Analysis Question 2:

A piece of material is subjected to two perpendicular tensile stresses (σ= 100 MPa. and σ= 60 MPa). What will be inclination (θ) of the plane on which the resultant stress (R) has maximum obliquity (φ) with the normal?

Task Id 1206 Daman (4)

  1. \(\theta=\tan ^{-1} \sqrt{\frac{3}{5}}\)
  2. \(\theta=\tan ^{-1} \frac{3}{5}\)
  3. \(\theta=\tan ^{-1} \frac{5}{3}\)
  4. \( \theta=\tan ^{-1} \sqrt{\frac{5}{3}}\)

Answer (Detailed Solution Below)

Option 4 : \( \theta=\tan ^{-1} \sqrt{\frac{5}{3}}\)

Analytical Method of Analysis Question 2 Detailed Solution

Explanation:

Determining the Inclination of the Plane for Maximum Obliquity:

When a piece of material is subjected to two perpendicular tensile stresses, σx and σy, the inclination of the plane on which the resultant stress (R) has maximum obliquity (φ) with the normal can be determined using the principles of stress transformation in mechanics of materials.

In this problem, we are given:

  • σx = 100 MPa
  • σy = 60 MPa

The maximum obliquity of the resultant stress occurs when the shear stress (τ) on the plane is maximized. This typically happens at an angle θ where the plane is oriented such that the normal stress is balanced by the shear stress. Using Mohr's circle of stress, the inclination θ of the plane can be found.

The formula for the inclination θ of the plane on which the resultant stress R has maximum obliquity φ with the normal is given by:

θ = tan-1 (τ / σ)

Here, τ is the shear stress and σ is the normal stress on the plane. For the given problem, we need to derive the correct expression for θ by considering the relationship between the normal and shear stresses.

From the theory of Mohr's circle, the inclination θ for the plane on which the resultant stress has maximum obliquity can be derived as:

θ = tan-1x / σy)

Plugging in the given values:

θ = tan-1 (100 / 60)

Simplifying this expression, we get:

\( \theta=\tan ^{-1} \sqrt{\frac{5}{3}}\)

Therefore, the correct inclination θ of the plane on which the resultant stress has maximum obliquity is:

\( \theta=\tan ^{-1} \sqrt{\frac{5}{3}}\)

 

Analytical Method of Analysis Question 3:

When a body is subjected to direct tensile stress (p), in one plane accompanied by a simple shear stress (q), the maximum normal stress is

  1. \(\frac{{{p}}}{2}\; + \;\frac{1}{2}\sqrt {p^2\; + \;4q^2}\)
  2. \(\frac{{{p}}}{2}\; - \;\frac{1}{2}\sqrt {p^2\; + \;4q^2}\)
  3. \(\frac{{{p}}}{2}\; + \;\frac{1}{2}\sqrt {p^2\; - \;4q^2}\)
  4. \(\frac{{{p}}}{2}\; - \;\frac{1}{2}\sqrt {p^2\; - \;4q^2}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{{{p}}}{2}\; + \;\frac{1}{2}\sqrt {p^2\; + \;4q^2}\)

Analytical Method of Analysis Question 3 Detailed Solution

Concept:

The maximum and minimum normal stress is given by

\({\sigma _{max,\;\;min}} = \frac{{{\sigma _x} + {\sigma _y}}}{2}\; \pm \sqrt {{{\left( {\frac{{{\sigma _x}\; - \;{\sigma _y}}}{2}} \right)}^2} + τ _{xy}^2} \)

where σand σy are direct stress and τxy is the shear stress

Calculation:

Given:

From the given condition we have,

σx = p, σy = 0, τxy = q

Now maximum normal stress is:

\({\sigma _{max}} = \frac{{{\sigma _x} + {\sigma _y}}}{2} + \sqrt {{{\left( {\frac{{{\sigma _x}\; - \;{\sigma _y}}}{2}} \right)}^2} + τ _{xy}^2} \)

\(\sigma_{max}= \frac{p }{2} + \frac{1}{2}\sqrt {{p ^2} + 4{q ^2}} \)

Analytical Method of Analysis Question 4:

A state of plane stress is shown in figure. Determine the principal stresses.

27 dec 7

  1. 70 MPa and 30 MPa
  2. 70 MPa and -30 MPa
  3. -70 MPa and 30 MPa
  4. -70 MPa and -30 MPa
  5. none of the above

Answer (Detailed Solution Below)

Option 2 : 70 MPa and -30 MPa

Analytical Method of Analysis Question 4 Detailed Solution

Concept:

Principal stresses are given by:

\({σ _{1,2}} = \frac{{{σ _x}\;+\;{σ _y}}}{2} \pm \sqrt {{{\left( {\frac{{{σ _x}\;-\;{σ _y}}}{2}} \right)}^2} +\;{τ _{x{y^2}}}} \)

Maximum shear stress:

\(\begin{array}{l} {τ _{max}} = \frac{{{σ _1}\;-\;{σ _2}}}{2}\\ {τ _{max}} = \frac{{{σ _1}\;-\;{σ _2}}}{2} = \sqrt {{{\left( {\frac{{{σ _x}\;-\;{σ _y}}}{2}} \right)}^2} + τ _{xy}^2} \end{array}\)

Calculation:

Given:

27 dec 7

σx = 50 MPa, σy = -10 MPa and τxy = 40 MPa

\({σ _{1,2}} = \frac{{{σ _x}\;+\;{σ _y}}}{2} \pm \frac{1}{2}\sqrt {{{\left( {{σ _x} - {σ _y}} \right)}^2} + 4τ _{xy}^2} \)

\(= \frac{{50\;+\;\left( { - 10} \right)}}{2} \pm \frac{1}{2}\sqrt {{{\left( {50 + 10} \right)}^2} + 4{{\left( {40} \right)}^2}}\)

⇒  20 ± 50

\(\therefore{σ _{1,2}} = 70~MPa, - 30~MPa\)

Analytical Method of Analysis Question 5:

Consider a two-dimensional state of stress for an element where, σx = 200 MPa σy = -100 MPa .The co-ordinates of the centre of Mohr’s circle are

  1. (0, 0)
  2. (100, 200)
  3. (200, 100)
  4.  (50, 0)
  5.  (50, 50)

Answer (Detailed Solution Below)

Option 4 :  (50, 0)

Analytical Method of Analysis Question 5 Detailed Solution

Concept

The coordinates of the centre of Mohr’s circle given by σAvg:

F2 Ateeb 12-1-2021 Swati D11

\(\sigma_{avg}=\left( {\frac{{{σ _x}\; + \;{σ _y}}}{2},0} \right)\)

Calculation

Given

σx = 200 MPa, σy = -100 MPa

Co-ordinates of the center of Mohr’s circle is

\(\sigma_{avg}=\left( {\frac{{{σ _x}\; + \;{σ _y}}}{2},0} \right)\)

\(\sigma_{avg}=\left(\frac{200\;+\;(-100)}{2},0\right)\)

\(\sigma_{avg}= \left( {\;\frac{{100}}{2},\;0} \right)=(50,0)\)

Top Analytical Method of Analysis MCQ Objective Questions

If the principal stresses in a plane stress problem, are σ1 = 100 MPa, σ2 = 40 MPa, the magnitude of the maximum shear stress (in MPa) will be

  1. 60
  2. 50
  3. 30
  4. 20

Answer (Detailed Solution Below)

Option 3 : 30

Analytical Method of Analysis Question 6 Detailed Solution

Download Solution PDF

Concept:

In the case of 3-D analysis, maximum shear stress can be calculated as:

maximum of \([\frac{{{σ _1} - {σ _2}}}{2},\frac{{{σ _2} - {σ _3}}}{2},\frac{{{σ _1} - {σ _3}}}{2}]\)

And In the case of plane stress analysis, maximum shear stress can be calculated by,

\({{\bf{\tau }}_{{\bf{max}}}} = \frac{{{{\rm{\sigma }}_1} - {{\rm{\sigma }}_2}}}{2}\), where σ1 and σ2 are principal stresses in a plane.

Calculation:

Given:

σ1 = 100 MPa , σ2 = 40 MPa

Now, In plane stress analysis, we have

\({{\bf{\tau }}_{{\bf{max}}}} = \frac{{{{\rm{\sigma }}_1} - {{\rm{\sigma }}_2}}}{2}\)

\(\therefore {\tau _{max}} = \frac{{{\sigma _1} - {\sigma _2}}}{2} = \frac{{100 - 40\;}}{{2\;}} = 30\;MPa\)

 

Maximum In-Plane shear stress/Surface shear stress:

\(\tau_{max,inplane}=\frac{{\sigma _1}\;-\;{\sigma _2}}{{2}}\)

Maximum wall shear stress/Out plane shear stress/Absolute maximum shear stress:

\(\tau_{max,abs}=\frac{{\sigma _{max}}\;-\;{\sigma _{min}}}{{2}}=\frac{\sigma_1}{2}\)

When a body is subjected to direct tensile stress (p), in one plane accompanied by a simple shear stress (q), the maximum normal stress is

  1. \(\frac{{{p}}}{2}\; + \;\frac{1}{2}\sqrt {p^2\; + \;4q^2}\)
  2. \(\frac{{{p}}}{2}\; - \;\frac{1}{2}\sqrt {p^2\; + \;4q^2}\)
  3. \(\frac{{{p}}}{2}\; + \;\frac{1}{2}\sqrt {p^2\; - \;4q^2}\)
  4. \(\frac{{{p}}}{2}\; - \;\frac{1}{2}\sqrt {p^2\; - \;4q^2}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{{{p}}}{2}\; + \;\frac{1}{2}\sqrt {p^2\; + \;4q^2}\)

Analytical Method of Analysis Question 7 Detailed Solution

Download Solution PDF

Concept:

The maximum and minimum normal stress is given by

\({\sigma _{max,\;\;min}} = \frac{{{\sigma _x} + {\sigma _y}}}{2}\; \pm \sqrt {{{\left( {\frac{{{\sigma _x}\; - \;{\sigma _y}}}{2}} \right)}^2} + τ _{xy}^2} \)

where σand σy are direct stress and τxy is the shear stress

Calculation:

Given:

From the given condition we have,

σx = p, σy = 0, τxy = q

Now maximum normal stress is:

\({\sigma _{max}} = \frac{{{\sigma _x} + {\sigma _y}}}{2} + \sqrt {{{\left( {\frac{{{\sigma _x}\; - \;{\sigma _y}}}{2}} \right)}^2} + τ _{xy}^2} \)

\(\sigma_{max}= \frac{p }{2} + \frac{1}{2}\sqrt {{p ^2} + 4{q ^2}} \)

Consider a two-dimensional state of stress for an element where, σx = 200 MPa σy = -100 MPa .The co-ordinates of the centre of Mohr’s circle are

  1. (0, 0)
  2. (100, 200)
  3. (200, 100)
  4.  (50, 0)

Answer (Detailed Solution Below)

Option 4 :  (50, 0)

Analytical Method of Analysis Question 8 Detailed Solution

Download Solution PDF

Concept

The coordinates of the center of Mohr’s circle given by σAvg:

F2 Ateeb 12-1-2021 Swati D11

\(\sigma_{avg}=\left( {\frac{{{σ _x}\; + \;{σ _y}}}{2},0} \right)\)

Calculation

Given

σx = 200 MPa, σy = -100 MPa

Co-ordinates of the center of Mohr’s circle is

\(\sigma_{avg}=\left( {\frac{{{σ _x}\; + \;{σ _y}}}{2},0} \right)\)

\(\sigma_{avg}=\left(\frac{200\;+\;(-100)}{2},0\right)\)

\(\sigma_{avg}= \left( {\;\frac{{100}}{2},\;0} \right)=(50,0)\)

The state of stress at a point, for a body in plane stress, is shown in the figure below. If the minimum principal stress is 10 kPa, then the normal stress σy (in kPa) is

GATE ME 2018 Set 1 Solutions images satya D 6

  1. 9.45
  2. 18.88
  3. 37.78
  4. 75.50

Answer (Detailed Solution Below)

Option 3 : 37.78

Analytical Method of Analysis Question 9 Detailed Solution

Download Solution PDF

Concept:

Principal Stress:

\({\sigma _{1,2}} = \frac{{{\sigma _x} + {\sigma _y}}}{2} \pm \sqrt {{{\left( {\frac{{{\sigma _x} - {\sigma _y}}}{2}} \right)}^2} + τ _{xy}^2\;} \)

Where σx and σy are the normal stress in x and y-direction respectively and τxy is the shear stress in x-y plane. 

The minimum principal stress will be 

\({\sigma _2} = \frac{{{\sigma _x} + {\sigma _y}}}{2} - \sqrt {{{\left( {\frac{{{\sigma _x} - {\sigma _y}}}{2}} \right)}^2} + τ _{xy}^2\;} \)

Calculation:

Given:

σx = 100 kPa, τxy = 50 kPa, σ2 = 10 kPa

Minimum Principal Stress:

\({\sigma _2} = \frac{{{\sigma _x} + {\sigma _y}}}{2} - \sqrt {{{\left( {\frac{{{\sigma _x} - {\sigma _y}}}{2}} \right)}^2} + τ _{xy}^2\;} \)

\(10 = \frac{{100 + {\sigma _y}}}{2} - \sqrt {{{\left( {\frac{{100 - {\sigma _y}}}{2}} \right)}^2} + {{50}^2}\;} \)

\(\sqrt {{{\left( {\frac{{100 - {\sigma _y}}}{2}} \right)}^2} + {{50}^2}\;} = \frac{{100 + {\sigma _y}}}{2} - 10\)

\({\left( {\frac{{100 - {\sigma _y}}}{2}} \right)^2} + 2500 = {\left( {\frac{{100 + {\sigma _y}}}{2} - 10} \right)^2} = {\left( {\frac{{100 + {\sigma _y}}}{2}} \right)^2} + {10^2} - 10\left( {100 + {\sigma _y}} \right)\)

\({\left( {100 - {\sigma _y}} \right)^2} + 10000 = {\left( {100 + {\sigma _y}} \right)^2} + 400 - 40\left( {100 + {\sigma _y}} \right)\)

\({100^2} + \sigma _y^2 - 200{\sigma _y} + 10000 = {100^2} + \sigma _y^2 + 200{\sigma _y} + 400 - 4000 - 40{\sigma _y}\)

\(13600 = 360\;{\sigma _y} \)

\(\Rightarrow {\sigma _y} = 37.78\;MPa\)

When a body is subjected to bi-axial stress, i.e. direct stress (P1) and (P2) in two mutually perpendicular planes accompanied by a simple shear stress (q), then maximum normal stress is 

  1. \(\rm \frac{P_1-P_2}{2}+\frac{1}{2} \sqrt{\left(P_1+P_2\right)^2+4 q^2} \)
  2. \( \rm \frac{P_1-P_2}{2}-\frac{1}{2} \sqrt{\left(P_1+P_2\right)^2+4 q^2}\)
  3. \( \rm \frac{P_1+P_2}{2}-\frac{1}{2} \sqrt{\left(P_1-P_2\right)^2+4 q^2} \)
  4. \(\rm \frac{P_1+P_2}{2}+\frac{1}{2} \sqrt{\left(P_1-P_2\right)^2+4 q^2}\)

Answer (Detailed Solution Below)

Option 4 : \(\rm \frac{P_1+P_2}{2}+\frac{1}{2} \sqrt{\left(P_1-P_2\right)^2+4 q^2}\)

Analytical Method of Analysis Question 10 Detailed Solution

Download Solution PDF

Concept:

When a body is subjected to bi-axial stresses (direct stresses P1 and P2 ) along with a shear stress q , the maximum and minimum normal stresses can be determined using stress transformation equations. The maximum normal stress is particularly important for failure analysis.

Given:

  • Direct stress in the first direction, \( P_1 \)
  • Direct stress in the second direction, \( P_2 \)
  • Shear stress, \( q \)

Step 1: Understand the Stress State

The given stress state consists of two normal stresses P1 and P2 acting in mutually perpendicular directions, along with a shear stress q .

Step 2: Use the Formula for Principal Stresses

The maximum and minimum normal stresses (principal stresses) are given by:

\[ \sigma_{\text{max}}, \sigma_{\text{min}} = \frac{P_1 + P_2}{2} \pm \frac{1}{2} \sqrt{(P_1 - P_2)^2 + 4q^2} \]

Step 3: Identify the Maximum Normal Stress

The maximum normal stress corresponds to the positive root of the expression:

\[ \sigma_{\text{max}} = \frac{P_1 + P_2}{2} + \frac{1}{2} \sqrt{(P_1 - P_2)^2 + 4q^2} \]

 

Analytical Method of Analysis Question 11:

If the principal stresses in a plane stress problem, are σ1 = 100 MPa, σ2 = 40 MPa, the magnitude of the maximum shear stress (in MPa) will be

  1. 60
  2. 50
  3. 30
  4. 20

Answer (Detailed Solution Below)

Option 3 : 30

Analytical Method of Analysis Question 11 Detailed Solution

Concept:

In the case of 3-D analysis, maximum shear stress can be calculated as:

maximum of \([\frac{{{σ _1} - {σ _2}}}{2},\frac{{{σ _2} - {σ _3}}}{2},\frac{{{σ _1} - {σ _3}}}{2}]\)

And In the case of plane stress analysis, maximum shear stress can be calculated by,

\({{\bf{\tau }}_{{\bf{max}}}} = \frac{{{{\rm{\sigma }}_1} - {{\rm{\sigma }}_2}}}{2}\), where σ1 and σ2 are principal stresses in a plane.

Calculation:

Given:

σ1 = 100 MPa , σ2 = 40 MPa

Now, In plane stress analysis, we have

\({{\bf{\tau }}_{{\bf{max}}}} = \frac{{{{\rm{\sigma }}_1} - {{\rm{\sigma }}_2}}}{2}\)

\(\therefore {\tau _{max}} = \frac{{{\sigma _1} - {\sigma _2}}}{2} = \frac{{100 - 40\;}}{{2\;}} = 30\;MPa\)

 

Maximum In-Plane shear stress/Surface shear stress:

\(\tau_{max,inplane}=\frac{{\sigma _1}\;-\;{\sigma _2}}{{2}}\)

Maximum wall shear stress/Out plane shear stress/Absolute maximum shear stress:

\(\tau_{max,abs}=\frac{{\sigma _{max}}\;-\;{\sigma _{min}}}{{2}}=\frac{\sigma_1}{2}\)

Analytical Method of Analysis Question 12:

When a body is subjected to direct tensile stress (p), in one plane accompanied by a simple shear stress (q), the maximum normal stress is

  1. \(\frac{{{p}}}{2}\; + \;\frac{1}{2}\sqrt {p^2\; + \;4q^2}\)
  2. \(\frac{{{p}}}{2}\; - \;\frac{1}{2}\sqrt {p^2\; + \;4q^2}\)
  3. \(\frac{{{p}}}{2}\; + \;\frac{1}{2}\sqrt {p^2\; - \;4q^2}\)
  4. \(\frac{{{p}}}{2}\; - \;\frac{1}{2}\sqrt {p^2\; - \;4q^2}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{{{p}}}{2}\; + \;\frac{1}{2}\sqrt {p^2\; + \;4q^2}\)

Analytical Method of Analysis Question 12 Detailed Solution

Concept:

The maximum and minimum normal stress is given by

\({\sigma _{max,\;\;min}} = \frac{{{\sigma _x} + {\sigma _y}}}{2}\; \pm \sqrt {{{\left( {\frac{{{\sigma _x}\; - \;{\sigma _y}}}{2}} \right)}^2} + τ _{xy}^2} \)

where σand σy are direct stress and τxy is the shear stress

Calculation:

Given:

From the given condition we have,

σx = p, σy = 0, τxy = q

Now maximum normal stress is:

\({\sigma _{max}} = \frac{{{\sigma _x} + {\sigma _y}}}{2} + \sqrt {{{\left( {\frac{{{\sigma _x}\; - \;{\sigma _y}}}{2}} \right)}^2} + τ _{xy}^2} \)

\(\sigma_{max}= \frac{p }{2} + \frac{1}{2}\sqrt {{p ^2} + 4{q ^2}} \)

Analytical Method of Analysis Question 13:

Consider a two-dimensional state of stress for an element where, σx = 200 MPa σy = -100 MPa .The co-ordinates of the centre of Mohr’s circle are

  1. (0, 0)
  2. (100, 200)
  3. (200, 100)
  4.  (50, 0)

Answer (Detailed Solution Below)

Option 4 :  (50, 0)

Analytical Method of Analysis Question 13 Detailed Solution

Concept

The coordinates of the center of Mohr’s circle given by σAvg:

F2 Ateeb 12-1-2021 Swati D11

\(\sigma_{avg}=\left( {\frac{{{σ _x}\; + \;{σ _y}}}{2},0} \right)\)

Calculation

Given

σx = 200 MPa, σy = -100 MPa

Co-ordinates of the center of Mohr’s circle is

\(\sigma_{avg}=\left( {\frac{{{σ _x}\; + \;{σ _y}}}{2},0} \right)\)

\(\sigma_{avg}=\left(\frac{200\;+\;(-100)}{2},0\right)\)

\(\sigma_{avg}= \left( {\;\frac{{100}}{2},\;0} \right)=(50,0)\)

Analytical Method of Analysis Question 14:

The maximum shear stress developed in the bar subjected to tensile stress (2σ) as shown in the figure will be_______.

F1 S.C Madhu 13.05.20 D 2

  1. σ
  2. 0.5σ 
  3. 0.25σ 

Answer (Detailed Solution Below)

Option 1 : σ

Analytical Method of Analysis Question 14 Detailed Solution

Concept:

\({{\rm{\tau }}_{{\rm{max}}}}{\rm{\;}} = {\rm{\;}}\frac{{{\sigma _1} - {\sigma _2}}}{2}\)

Calculation:

Given:

σ1 = 2σ, σ2 = 0

\(\therefore {\tau _{max\;}} = \frac{{{\sigma _1} - {\sigma _2}}}{2}\)

\(\therefore {\tau _{max\;}} = \frac{{2\sigma - 0}}{2}\)

\(\therefore {\tau _{max\;}} = \frac{{2\sigma }}{2}\)

\(\therefore {\tau _{max\;}} = \sigma\)

Analytical Method of Analysis Question 15:

A state of plane stress is shown in figure. Determine the principal stresses.

27 dec 7

  1. 70 MPa and 30 MPa
  2. 70 MPa and -30 MPa
  3. -70 MPa and 30 MPa
  4. -70 MPa and -30 MPa

Answer (Detailed Solution Below)

Option 2 : 70 MPa and -30 MPa

Analytical Method of Analysis Question 15 Detailed Solution

Concept:

Principal stresses are given by:

\({σ _{1,2}} = \frac{{{σ _x}\;+\;{σ _y}}}{2} \pm \sqrt {{{\left( {\frac{{{σ _x}\;-\;{σ _y}}}{2}} \right)}^2} +\;{τ _{x{y^2}}}} \)

Maximum shear stress:

\(\begin{array}{l} {τ _{max}} = \frac{{{σ _1}\;-\;{σ _2}}}{2}\\ {τ _{max}} = \frac{{{σ _1}\;-\;{σ _2}}}{2} = \sqrt {{{\left( {\frac{{{σ _x}\;-\;{σ _y}}}{2}} \right)}^2} + τ _{xy}^2} \end{array}\)

Calculation:

Given:

27 dec 7

σx = 50 MPa, σy = -10 MPa and τxy = 40 MPa

\({σ _{1,2}} = \frac{{{σ _x}\;+\;{σ _y}}}{2} \pm \frac{1}{2}\sqrt {{{\left( {{σ _x} - {σ _y}} \right)}^2} + 4τ _{xy}^2} \)

\(= \frac{{50\;+\;\left( { - 10} \right)}}{2} \pm \frac{1}{2}\sqrt {{{\left( {50 + 10} \right)}^2} + 4{{\left( {40} \right)}^2}}\)

⇒  20 ± 50

\(\therefore{σ _{1,2}} = 70~MPa, - 30~MPa\)

Get Free Access Now
Hot Links: teen patti royal teen patti master king teen patti gold new version