Magnitude and Directions of a Vector MCQ Quiz in বাংলা - Objective Question with Answer for Magnitude and Directions of a Vector - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Mar 22, 2025

পাওয়া Magnitude and Directions of a Vector उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Magnitude and Directions of a Vector MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Magnitude and Directions of a Vector MCQ Objective Questions

Top Magnitude and Directions of a Vector MCQ Objective Questions

Magnitude and Directions of a Vector Question 1:

Find the value of a - b if the vectors are collinear.

  1. 187/24
  2. -187/24
  3. 24/187
  4. -24/187

Answer (Detailed Solution Below)

Option 1 : 187/24

Magnitude and Directions of a Vector Question 1 Detailed Solution

Let

For two vectors to be collinear,

So,

On comparing,

3 = 2λb, 4 = -3λ and -a = 5λ

λ = (-4)/3

a = 20/3

And b = (-9)/8

a – b = 20/3 - ((-9)/8)

a – b = 187/24

Magnitude and Directions of a Vector Question 2:

Comprehension:

 such that  and 

What is  equal to?

  1. 7
  2. 8
  3. 10
  4. 11

Answer (Detailed Solution Below)

Option 1 : 7

Magnitude and Directions of a Vector Question 2 Detailed Solution

Calculation:

Here, 

Hence, option (1) is correct. 

Magnitude and Directions of a Vector Question 3:

Comprehension:

 such that  and 

What is cosine of the angle between  and  ?

  1. 11 / 12
  2. 13 / 14
  3. -11 / 12
  4. -13 / 14

Answer (Detailed Solution Below)

Option 4 : -13 / 14

Magnitude and Directions of a Vector Question 3 Detailed Solution

Concept:

Calculation:

Here,  and 

⇒ 32 = 52 + 72 + 2(5)(7) cos θ 

⇒ 9 - 25 - 49 = 70 cos θ 

⇒ cos θ = (-65/70) = (-13/14)

Hence, option (4) is correct. 

Magnitude and Directions of a Vector Question 4:

Let  and  be unit vectors lying on the same plane. What is  equal to ?

  1. −8
  2. −32
  3. 8
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0

Magnitude and Directions of a Vector Question 4 Detailed Solution

Concept:

If  is unit vector, then || = 1

For any vector . = ||2

For any vector  ×  = 0

For any two vectors  and 

For any two vectors  and 

If   and  are three coplanar vectors, then their scalar triple product is 0

If any two vectors in scalar triple product are equal, then scalar triple product is 0.

Calculation:

Given,   and  be unit vectors lying on the same plane. 

⇒   and  are coplanar vectors. 

that is 

and  || = 1,  || = 1 and  || = 1

Now, 

Using distributive property,

⇒ 

⇒      (∵   ×  = 0)

⇒   

Again using distributive property,

⇒ \(\{ 10(\vec{\text{b}} × \vec{\text{a}})⋅\vec{\text{b}} − 12(\vec{\text{a}}×\vec{\text{c}})⋅\vec{\text{b}}- 8(\vec{\text{b}}×\vec{\text{c}})⋅\vec{\text{b}}\} + \{ 20(\vec{\text{b}} × \vec{\text{a}})⋅\vec{\text{c}} − 24(\vec{\text{a}}×\vec{\text{c}})⋅\vec{\text{c}}- 16(\vec{\text{b}}×\vec{\text{c}})⋅\vec{\text{c}}\}\) 

As, if any two vectors in scalar triple product are equal, then scalar triple product is 0.

⇒ \(\{ 10(0) − 12(\vec{\text{a}}×\vec{\text{c}})⋅\vec{\text{b}}- 8(0)\} + \{ 20(\vec{\text{b}} × \vec{\text{a}})⋅\vec{\text{c}} − 24(0)- 16(0)\}\) 

⇒ \(20(\vec{\text{b}} × \vec{\text{a}})⋅\vec{\text{c}}− 12(\vec{\text{a}}×\vec{\text{c}})⋅\vec{\text{b}}\) 

As,   and  are coplanar vectors. 

⇒ 20(0) - 12(0) = 0

∴ The correct option is (4).

Magnitude and Directions of a Vector Question 5:

If the magnitude of vector  is 6, then find the value of λ2.

  1. 10
  2. 9
  3. 11
  4. 12

Answer (Detailed Solution Below)

Option 1 : 10

Magnitude and Directions of a Vector Question 5 Detailed Solution

Concept:

Magnitude of vector  then magnitude of vector is given by 

Calculation:

Given: Let  and 

As we know that, if  then 

⇒ 

⇒ 

By squaring both the sides, we get

⇒ 36 = 26 + λ2

⇒ λ2 = 10 

Hence, option 1 is correct.

Magnitude and Directions of a Vector Question 6:

If a and b are two vectors such that  and a × (3i + 2j + 4k) = (3i + 2j + 4k) × b, then the possible value of (a + b).(2i - 7j + 3k) is

  1. 0
  2. 9
  3. 4
  4. 2

Answer (Detailed Solution Below)

Option 3 : 4

Magnitude and Directions of a Vector Question 6 Detailed Solution

Concept:

If vector v = ai + bj + ck, then magnitude of vector v is .

Two vectors a and b are said to be parallel vectors if one is a scalar multiple of the other. i.e., a = λb, where 'λ' is a scalar.

Formulae

(a × b) = -(b × a)

Calculation:

We have,

a × (3i + 2j + 4k) = (3i + 2j + 4k) × b

 a × (3i + 2j + 4k) - (3i + 2j + 4k) × b = 0

 a × (3i + 2j + 4k) + b × (3i + 2j + 4k) = 0             [(a × b) = -(b × a)]

 (a + b) × (3i + 2j + 4k) = 0

So, (a + b) and (3i + 2j + 4k) are parallel vectors.

 (a + b) = λ(3i + 2j + 4k)

⇒  = 

⇒ 

⇒ 

⇒ λ = ± 1

a + b = ± (3i + 2j + 4k)

Now,

(a + b).(2i - 7j + 3k) =  ± (3i + 2j + 4k).(2i - 7j + 3k)

 = ± (6 - 14 + 12)

 = ± 4

∴ The possible value of (a + b).(2i - 7j + 3k) is 4.

Magnitude and Directions of a Vector Question 7:

Find the value of the given magnitude of the vector,  ?

  1. 1.5
  2. 1

Answer (Detailed Solution Below)

Option 4 : 1

Magnitude and Directions of a Vector Question 7 Detailed Solution

Given:

Formula:

The magnitude of vector aî + bĵ + ck̂ is given by √(a2 + b2 +c2)

Calculation:

Magnitude of  

= √[(1/√3)2 + (1/√3)2 + (1/√3)2]

= 1

Magnitude and Directions of a Vector Question 8:

The vector in the direction of the vector î − 2ĵ + 2k̂ that has magnitude 9 is

  1. î − 2ĵ + 2k̂
  2. 3(î − 2ĵ + 2k̂)
  3. 9(î − 2ĵ + 2k̂)

Answer (Detailed Solution Below)

Option 3 : 3(î − 2ĵ + 2k̂)

Magnitude and Directions of a Vector Question 8 Detailed Solution

Concept:

The unit vector in the direction of a vector  is given by .

Calculation:

Let  î − 2ĵ + 2k̂

The unit vector in the direction of a vector  is given by .

∴ Vector in the direction of the vector î − 2ĵ + 2k̂ that has magnitude 9 is

9 ×  

= 3(î − 2ĵ + 2k̂)

The vector in the direction of the vector î − 2ĵ + 2k̂ that has magnitude 9 is  3(î − 2ĵ + 2k̂).

The correct answer is option 3.

Magnitude and Directions of a Vector Question 9:

Find the direction cosines of the vector î + 2ĵ - k̂.

  1. None of these.

Answer (Detailed Solution Below)

Option 1 :

Magnitude and Directions of a Vector Question 9 Detailed Solution

Concept:

The direction cosines of the vector aî + bĵ + ck̂ are given by α = , β =  and γ = .

 

Calculation:

For the given vector î + 2ĵ - k̂, a = 1, b = 2 and  = -1.

The direction cosines of the vector are:

α = , β =  and γ = 

⇒ α = , β =  and γ = 

Magnitude and Directions of a Vector Question 10:

If  are two vectors then find the value of  ?

  1. None of these

Answer (Detailed Solution Below)

Option 1 :

Magnitude and Directions of a Vector Question 10 Detailed Solution

CONCEPT:

If  is a vector then magnitude of  is given by: 

CALCULATION:

Given: 

Here, we have to find the value of 

⇒ 

⇒ 

As we know that, if   then magnitude of  is given by: 

⇒ 

Hence, option A is the correct answer.

Hot Links: teen patti online game real teen patti teen patti star apk