What is the value of p for which the function \(\rm f(x)= p \sin x + \dfrac{\sin 3x}{3}\) has an extremum at \(\rm x=\dfrac{\pi}{3} \ ?\)

  1. 0
  2. 1
  3. -1
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2
Free
CRPF Head Constable & ASI Steno (Final Revision): Mini Mock Test
20.7 K Users
40 Questions 40 Marks 45 Mins

Detailed Solution

Download Solution PDF

Concept:

If the function f(x) has an extremum at x = a then f'(a) = 0

 

Calculations:

Given, the function is \(\rm f(x)= p \sin x + \dfrac{\sin 3x}{3}\) 

⇒ f'(x) = \(\rm p\;cos \; x + \dfrac {3\;cos \;3x}{3}\)

⇒ f'(x) = \(\rm p\;cos \; x + cos \;3x\)

⇒ f'(\(\rm \dfrac {\pi}{3}\)) = \(\rm p\;cos \; (\dfrac {\pi}{3}) + cos \;3(\dfrac {\pi}{3})\)

⇒ f'(\(\rm \dfrac {\pi}{3}\)) = \(\rm p\;cos \; (\dfrac {\pi}{3}) + cos \; \pi\)

The function \(\rm f(x)= p \sin x + \dfrac{\sin 3x}{3}\) has an extremum at \(\rm x=\dfrac{\pi}{3}\)

Therefore,  \(\rm f'(\dfrac {\pi}{3}) = 0\)

⇒ \(\rm p\;cos \; (\dfrac {\pi}{3}) + cos \; \pi\) = 0

⇒ \(\rm \dfrac p 2 -1 = 0\)

⇒ \(\rm \dfrac p 2 =1\)

⇒ \(\rm p = 2\)

 Hence, the value of p for which the function \(\rm f(x)= p \sin x + \dfrac{\sin 3x}{3}\) has an extremum at \(\rm x=\dfrac{\pi}{3}\) is 2.

Latest Indian Coast Guard Navik GD Updates

Last updated on Jun 11, 2025

-> The Indian Coast Guard Navik GD is a prestigious exam for those who want to serve the country in Defence Services.

-> A total of 260 vacancies have been released through the Coast Guard Enrolled Personnel Test (CGEPT) for the 01/2026 and 02/2026 batch.

-> Candidates can apply online from 11th to 25th June 2025.

-> Candidates who have completed their 10+2 with Maths and Physics are eligible for this post. 

-> Candidates must go through the Indian Coast Guard Navik GD previous year papers.

Get Free Access Now
Hot Links: dhani teen patti teen patti master golden india lucky teen patti teen patti cash game teen patti gold apk download