Let {En} be a sequence of subsets of \(\mathbb{R}\).
Define
\(\limsup _n E_n=\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n\)

\(\liminf _n E_n=\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n\)

Which of the following statements is true?

This question was previously asked in
CSIR-UGC (NET) Mathematical Science: Held on (26 Nov 2020)
View all CSIR NET Papers >
  1. limsupn En = liminfn En 
  2. limsupn En = {x ∶ x ∈ En for some n}
  3. liminfn En = {x ∶ x ∈ Efor all but finitely many n}
  4. liminfn En = {x ∶ x ∈ E for infinitely many n}

Answer (Detailed Solution Below)

Option 3 : liminfn En = {x ∶ x ∈ Efor all but finitely many n}
Free
Seating Arrangement
3.4 K Users
10 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

Concept -

(i) If the sequence xconvergent  then limsupn En = liminfn En 

Calculation:

Let {En} be a sequence of subsets of R 

\(\limsup _n E_n=\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n\)  and 

\(\liminf _n E_n=\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n\)

for option 1, if convergent  then limsupn En = liminfn En 

option 1 is incorrect

\(∈\) \(\ {\cap}\) Ai imply x ∈ Ai 

\(∈\)\(\ {\cap}\)(\(\ {\cup}\)En )

\(∈\)\(\ {\cup}\) En ( finite )

Hence option (2) & (4) are incorrect 

Hence option (3) is correct 

Latest CSIR NET Updates

Last updated on Jun 5, 2025

-> The NTA has released the CSIR NET 2025 Notification for the June session.

-> The CSIR NET Application Form 2025 can be submitted online by 23rd June 2025

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Analysis Questions

Get Free Access Now
Hot Links: teen patti baaz teen patti gold download apk teen patti pro teen patti win