\(4\sin^2 x+ 3\cos^2 x + \sin \frac x 2 + \cos \frac x 2\) का अधिकतम मान क्या है?

This question was previously asked in
NIMCET 2017 Official Paper
View all NIMCET Papers >
  1. 4
  2. 3 + √2
  3. 9
  4. 4 + √2

Answer (Detailed Solution Below)

Option 4 : 4 + √2
Free
NIMCET 2020 Official Paper
10.7 K Users
120 Questions 480 Marks 120 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

 sin2x + cos2x = 1

 

गणना:

माना कि, f(x) = \(4\sin^2 x+ 3\cos^2 x + \sin \frac x 2 + \cos \frac x 2\) है। 

\(\rm f(x) \rm =4 \sin ^{2} x+3\left(1-\sin ^{2} x\right)+\sin \frac{x}{2}+\cos \frac{x}{2}\)

\(\rm =4 \sin ^{2} x+3-3 \sin ^{2} x+\sin \frac{x}{2}+\cos \frac{x}{2}\)

\(\rm =\sin ^{2} x+3+\sin \frac{x}{2}+\cos \frac{x}{2}\)

\(\rm =\sin ^{2} x+3+\sqrt{2}\left[\frac{1}{\sqrt{2}} \sin \frac{x}{2}+\cos \frac{x}{2} \cdot \frac{1}{\sqrt{2}}\right]\)

\(\rm =3+\sin ^{2} x+\sqrt{2} \sin \left(\frac \pi 4+\frac{x}{2}\right)\)

\(\rm =3+1+\sqrt{2}(1)\)              (∵ sin2x = 1 और \(\sin (\frac \pi 4+\frac{x}{2})=1\) का अधिकतम मान)

इसलिए \(4\sin^2 x+ 3\cos^2 x + \sin \frac x 2 + \cos \frac x 2\) का अधिकतम मान 4 + √2 है। 

अतः विकल्प (4) सही है। 

Latest NIMCET Updates

Last updated on Jun 12, 2025

->The NIMCET 2025 provisional answer key is out now. Candidates can log in to the official website to check their responses and submit objections, if any till June 13, 2025.

-> NIMCET exam was conducted on June 8, 2025.

-> NIMCET 2025 admit card was out on June 3, 2025.

-> NIMCET 2025 results will be declared on June 27, 2025. Candidates are advised to keep their login details ready to check their scrores as soon as the result is out.

-> Check NIMCET 2025 previous year papers to know the exam pattern and improve your preparation.

More Inverse Trigonometric Functions Questions

Get Free Access Now
Hot Links: teen patti pro teen patti dhani teen patti bonus