\(\overline{x}_{lim \rightarrow 0}\frac{xe^x- \log (1+x)}{x^2}\) के बराबर है

This question was previously asked in
45th BPSC Prelims (Held in 2002) Official paper
View all BPSC Exam Papers >
  1. \(\frac{1}{2}\)
  2. \(\frac{3}{2}\)
  3. 0
  4. \(\frac{5}{2}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{3}{2}\)
Free
70th BPSC CCE Exam Mini Free Mock Test
59.7 K Users
75 Questions 75 Marks 60 Mins

Detailed Solution

Download Solution PDF

सही उत्तर विकल्प 2 है।

दिया गया है: \(\overline{x}_{lim \rightarrow 0}\frac{xe^x- \log (1+x)}{x^2}\)

गणना:

⇒ \(\overline{x}_{lim \rightarrow 0}\dfrac{xe^x- \log (1+x)}{x^2}\)

⇒ \(\overline{x}_{lim \rightarrow 0}\dfrac{(0)e^0- \log (1+0)}{0^2}\)

⇒ \(\overline{x}_{lim \rightarrow 0}\dfrac{0- \log (1)}{0}\)

हम जानते हैं कि log(1) = 0,

तो, यह फलन का 0/0 रूप है

अब, हम एल् हास्पिटल का नियम लागू कर सकते हैं

⇒ एल् हास्पिटल के नियम में, हम अंश और हर में तब तक अंतर करते हैं जब तक कि 0/0 का रूप समाप्त नहीं हो जाता।

⇒ \(\overline{x}_{lim \rightarrow 0}\dfrac{xe^x + e^x - \frac{1}{(1+x)}}{2x}\)

जब हम x = 0 रखते हैं, तो फिर से यह फलन 0/0 हो जाता है।

एल् हास्पिटल नियम फिर से लागू करें,

⇒ \(\overline{x}_{lim \rightarrow 0}\dfrac{xe^x +e^x + e^x - \frac{(0 - 1)}{(1+x)^2}}{2}\)

अब x = 0 रखिए

⇒ \(\overline{x}_{lim \rightarrow 0}\dfrac{0.e^0 +e^0 + e^0 - \frac{(0 - 1)}{(1+0)^2}}{2}\)

⇒ \(\dfrac{3}{2}\)

अत:, दिए गए फलन का मान \(\dfrac{3}{2}\) होगा।

Additional Information

  • उत्पाद नियम: d/dx (uv) = u dv/dx + v du/dx
  • भागफल नियम: d/dx (u/v) = ( v du/dx - u dv/dx)/v2
Latest BPSC Exam Updates

Last updated on Jul 4, 2025

-> BPSC 71 Exam will be held on 12 September

-> The BPSC 71th Vacancies increased to 1298.

-> The BPSC 71th Prelims Exam 2025 will be held on 10 September.

-> Candidates can visit the BPSC 71 new website i.e. bpscpat.bihar.gov.in for the latest notification.

-> BPSC 71th CCE 2025 Notification is out. BPSC. The registration process begins on 02nd June and will continue till 30th June 2025.

-> The exam is conducted for recruitment to posts such as Sub-Division Officer/Senior Deputy Collector, Deputy Superintendent of Police and much more.

-> The candidates will be selected on the basis of their performance in prelims, mains, and personality tests.

-> To enhance your preparation for the BPSC 71 CCE prelims and mains, attempt the BPSC CCE Previous Years' Papers.

-> Stay updated with daily current affairs for UPSC.

More Limit and Continuity Questions

Get Free Access Now
Hot Links: teen patti pro teen patti gold apk download teen patti master gold teen patti online game