Question
Download Solution PDF27 tan2x + 3cot2x का न्यूनतम मान क्या है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFअवधारणा:
समांतर माध्य, ज्यामितीय माध्य, हरात्मक माध्य के सूत्र:
यदि A संख्या a और b का समांतर माध्य है
⇔ \({\rm{A}} = \frac{{{\rm{a\;}} + {\rm{\;b}}}}{2}\)
यदि G संख्या a और b का ज्यामितीय माध्य है
⇔ \({\rm{G}} = \sqrt {{\rm{ab}}} \)
समांतर माध्य (AM) और ज्यामितीय माध्य (GM) के बीच संबंध
AM ≥ GM
गणना:
दिया गया है कि,
27 tan2x + 3cot2x
माना a = 27tan2 x, b = 3cot2 x
हम जानतें है कि,
AM ≥ GM
\(⇒\ \frac{27tan^2 x + 3cot^2 x}{2}\ ≥ \ \sqrt{27tan^2 x\times 3cot^2 x}\)
हम जानतें है कि, tan θ × cot θ = 1
\(⇒\ {27tan^2 x + 3cot^2 x}\ ≥ \ 2\times 9\)
⇒ 27 tan2x + 3cot2x ≥ 18
⇒ 27 tan2x + 3cot2x ∈ [18, ∞)
अत: न्यूनतम मान 18 है।
Last updated on Jun 18, 2025
->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.