Question
Download Solution PDFयदि 50 प्रेक्षणों x1, x2, …,x50 का माध्य और मानक विचलन दोनों 16 के बराबर हैं, तो (x1 - 4)2, (x2 - 4)2,….(x50 - 4)2 का माध्य है:
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिया गया है, 50 प्रेक्षणों का माध्य और मानक विचलन 16 के बराबर है।
माध्य, \(\left( \mu \right) = \frac{{\sum {x_i}}}{{50}} = \frac{{{x_1} + {x_2} + \ldots .{x_{50}}}}{{50}} = 16\)
∴ \(∑xi = 16 \times 50\)
मानक विचलन, \(\left( \sigma \right) = \sqrt {\frac{{\sum x_i^2}}{{50}} - {{(\mu )}^2}} = 16\)
\( \Rightarrow \frac{{\sum x_i^2}}{{50}} = \)256 x 2
अभीष्ट माध्य \( = \frac{{{{\left( {{x_1} - 4} \right)}^2} + {{\left( {{x_2} - 4} \right)}^2} + \ldots {{\left( {{x_{50}} - 4} \right)}^2}}}{{50}}\)
\( = \frac{{\sum {{\left( {{x_i} - 4} \right)}^2}}}{{50}}\)
\( = \frac{{\sum x_i^2 + 16 \times 50 - 8\sum {x_i}}}{{50}}\)
\(= 256 \times 2 + 16 - 8 \times 16\)
\(= 528 - 128 = 400\)Last updated on May 23, 2025
-> JEE Main 2025 results for Paper-2 (B.Arch./ B.Planning) were made public on May 23, 2025.
-> Keep a printout of JEE Main Application Form 2025 handy for future use to check the result and document verification for admission.
-> JEE Main is a national-level engineering entrance examination conducted for 10+2 students seeking courses B.Tech, B.E, and B. Arch/B. Planning courses.
-> JEE Mains marks are used to get into IITs, NITs, CFTIs, and other engineering institutions.
-> All the candidates can check the JEE Main Previous Year Question Papers, to score well in the JEE Main Exam 2025.