θ के किस मान के लिए, जहाँ 0 < θ < \(\frac{\pi}{2}\)  है, sin θ + sin θ cos θ अधिकतम मान प्राप्त करता है?

This question was previously asked in
NDA 02/2021: Maths Previous Year paper (Held On 14 Nov 2021)
View all NDA Papers >
  1. \(\frac{\pi}{2}\)
  2. \(\frac{\pi}{3}\)
  3. \(\frac{\pi}{4}\)
  4. \(\frac{\pi}{6}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{\pi}{3}\)
Free
NDA 01/2025: English Subject Test
5.5 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

इस्तेमाल किया गया सूत्र:

sin 2θ = 2 sinθ cosθ 

cos 2θ = 2cos2θ - 1

प्रयुक्त अवधारणा:

f'(x) = 0 x = a एक बिंदु पर है

  • यदि f'(x) चिन्ह को धनात्मक से ऋणात्मक में बदलता है जबकि फलन का ग्राफ x = a से गुजरता है तो x = a को एक बिंदु स्थानीय उच्चिष्ठ कहा जाता है।
  • यदि f''(a) <0 तो x = a स्थानीय उच्चिष्ठ का एक बिंदु है।

गणना:

मान लीजिए f(θ) = sinθ + sinθ cosθ

⇒ f(θ) = sinθ + \(\rm \frac{1}{2}\)​ sin 2θ

⇒ f'(θ) = cosθ + \(\rm \frac{1}{2}\)​ cos 2θ × 2

⇒ f'(θ) =  cosθ + cos 2θ 

f'(θ) = 0 रखने पर

⇒ cosθ + 2cos2θ - 1 = 0

⇒ 2cos2θ + 2cosθ - cosθ  - 1 = 0

⇒ 2cosθ (cosθ + 1) - 1(cosθ + 1) = 0 

⇒ (cosθ + 1) (2cosθ - 1) = 0

⇒ cosθ = 1/2, cosθ = -1

⇒ θ = π/3, π 

दी गई श्रेणी के अनुसार 0 < < \(\frac{π}{2}\)

θ = π/3

θ = π/3 के इस मान पर फलन अधिकतम और न्यूनतम हो सकता है

इसलिए, हमें दूसरे अवकलज की जांच करनी होगी

f"(θ) = - sinθ - 2sin2θ 

θ = π/3 पर

f"(π/3 ) ≤ 0

अतः, हम कह सकते हैं कि θ = π/3 स्थानीय उच्चिष्ठ का एक बिंदु है।

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Inverse Trigonometric Functions Questions

Get Free Access Now
Hot Links: teen patti 100 bonus teen patti all teen patti cash teen patti game paisa wala