Question
Download Solution PDFDivide the matrix A in the sum of symmetric and skew-symmetric
A = \(\rm \begin{bmatrix} 2 & -4 & 3\\ 3 & 1 & -2\\ 1& -3 & 5 \end{bmatrix}\).
Which of the following is that skew-symmetric matrix?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFConcept:
A matrix X can be written as a sum of symmetric and skew-symmetric matrix which are
P(symmetric) = \(\rm 1\over2\)(X + XT)
Q(skew-symmetric) = \(\rm 1\over2\)(X - XT)
Calculation:
A = \(\rm \begin{bmatrix} 2 & -4 & 3\\ 3 & 1 & -2\\ 1& -3 & 5 \end{bmatrix}\)
AT = \(\rm \begin{bmatrix} 2 & 3 & 1\\ -4& 1 & -3\\ 3& -2 & 5 \end{bmatrix}\)
P(symmetric matrix) = \(\rm 1\over2\)(A + AT)
⇒ P = \(\rm {1\over2}\left(\begin{bmatrix} 2 & -4 & 3\\ 3 & 1 & -2\\ 1& -3 & 5 \end{bmatrix}+ \begin{bmatrix} 2 & 3 & 1\\ -4& 1 & -3\\ 3& -2 & 5 \end{bmatrix}\right)\)
⇒ P = \(\rm \begin{bmatrix} 2 & -0.5 & 2\\ -0.5& 1 & -2.5\\ 2& -2.5 & 5 \end{bmatrix}\)
Q(skew-symmetric) = \(\rm 1\over2\)(A - AT)
Last updated on May 30, 2025
->UPSC has released UPSC NDA 2 Notification on 28th May 2025 announcing the NDA 2 vacancies.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced for cycle 2. The written examination will be held on 14th September 2025.
-> Earlier, the UPSC NDA 1 Exam Result has been released on the official website.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.