Numerical Analysis MCQ Quiz in తెలుగు - Objective Question with Answer for Numerical Analysis - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Mar 18, 2025

పొందండి Numerical Analysis సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Numerical Analysis MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Numerical Analysis MCQ Objective Questions

Top Numerical Analysis MCQ Objective Questions

Numerical Analysis Question 1:

In the table below, the values of y are consecutive terms of a series of which 52.8 is the 8th term

x 3 4 5 6 7 8 9
y 4.8 8.4 14.5 23.6 36.2 52.8 73.9

Then the first term is 

  1. 2.9
  2. 4.8
  3. 3.1
  4. 4.2

Answer (Detailed Solution Below)

Option 3 : 3.1

Numerical Analysis Question 1 Detailed Solution

Concept:

Newton's Forward Difference formula:

y(x) = y0 + pΔy0  Δ2yΔ3y0 + ....

where p =  and h is the step length

Explanation:

From the given data we can write the difference table as

x y Δy  Δ2y Δ3y Δ4y
3 4.8        
    3.6      
4 8.4   2.5    
    6.1   0.5  
5 14.5   3.0   0
    9.1   0.5  
6 23.6   3.5   0
    12.6   0.5  
7 36.2   4.0   0
    16.6   0.5  
8 52.8   4.5    
    21.1      
9 73.9        

 

Here x0 = 3, x = 1, h = 4 - 3 = 1 and so p = (1 - 3)/1 = - 2

Then using Newton's Forward Difference formula,

y(1) = 4.8+ (-2) × 3  × 2.5 × 0.5 = 3.1

(3) is correct

Numerical Analysis Question 2:

The sufficient condition for the convergence of Newton-Raphson iteration scheme is

  1.  |f(x).f'(x)| < |f’'(x)|2
  2.  |f(x).f’’(x)| > |f’(x)|2
  3.  |f(x).f’’(x)| < |f’(x)|2
  4.  |f(x).f'(x)| > |f’'(x)|2

Answer (Detailed Solution Below)

Option 3 :  |f(x).f’’(x)| < |f’(x)|2

Numerical Analysis Question 2 Detailed Solution

Explanation:

Newton Raphson's method: Let x0 be the initial guess of f(x) then the nth iteration to finding the root of f(x) is is given by

The order of convergence of Newton Raphson method is 2 or the convergence is quadratic.

It converges if |f(x).f’’(x)| 2. Also, this method fails if f’(x) = 0.

(3) is correct

Numerical Analysis Question 3:

Let I =  obtained through Trapezoidal rule with five points then which of the following is correct

  1. I = 6
  2. I = 10
  3. I = - 5
  4. I = 8

Answer (Detailed Solution Below)

Option 2 : I = 10

Numerical Analysis Question 3 Detailed Solution

Concept:

Trapezoidal rule: 

 ≈ 

where , xn = b, x0 = a

Explanation:

Here f(x) = ||x + 1| + |x - 1||, a = -2, b = 2, n = 4 as there are five points so intervals = 4

Dividing [-2, 2] into 4 subintervals we get endpoints as

a = -2, -1, 0, 1, 2 = b

f(x0) = f(-2) = 4, f(x1) = f(-1) = 2

f(x2) = f(0) = 2, f(x3) = f(1) = 2, f(x4) = f(2) = 4

Then using the Trapezoidal rule

I =  = 10

(2) is correct

Numerical Analysis Question 4:

The magnitude of the truncation error for the scheme f'(x) = Af(x) + Bf(x + h)  +Cf(x + 2h) is equal to   

  1. h2f'''(ξ) if A = -, B = , C = -
  2. h2f'''(ξ) if A = , B = , C = 
  3. h2f''(x) if A = -, B = , C = -
  4. h2f''(x) if A = , B = , C = 

Answer (Detailed Solution Below)

Option 3 : h2f''(x) if A = -, B = , C = -

Numerical Analysis Question 4 Detailed Solution

Concept:

Taylor series expansion of f(x + h) is

f(x + h) = f(x) + h f'(x) + f''(x) + f'''(x) + ... 

Explanation:

f'(x) = Af(x) + Bf(x + h)  +Cf(x + 2h)

f'(x) = Af(x) + B{f(x) + h f'(x) + f''(x) + f'''(x) + ...} + C{f(x) + 2h f'(x) + f''(x) + f'''(x) + ...} 

f'(x) = (A + B + C)f(x) + (Bh + 2Ch)f'(x) + ()f''(x) + ( + )f'''(x) + .....

In this expression, we can see that h2 is associated with f''(x)

So options (1) and (2) are false.

Now, the magnitude of the truncation error will be of the form f''(x) if

A + B + C = 0, Bh + 2Ch = 1

(3): A = -, B = , C = - 

A + B + C =  = 0

Bh + 2Ch =  -   = 1/6 ≠ 1

Option (3) is false

(4):  A = , B = , C = 

A + B + C =  ≠ 0

Option (4) is false

All options are wrong here

Numerical Analysis Question 5:

Let y(t) satisfy the differential equation y' = λy; y(0) = 1. Then the backward Euler method, for n ≥ 1 & h > 0  yields

  1. a first order approximation to eλnh.
  2. a polynomial approximation to eλnh.
  3. a rational function approximation to eλnh.
  4. a Chebyshev polynomial approximation to eλnh.

Answer (Detailed Solution Below)

Option :

Numerical Analysis Question 5 Detailed Solution

Explanation:

 y' = λy; y(0) = 1

xnx0 + nh = 0 +nh = nh

y' = λy

 = λdx 

Integrating

y = c1eλx 

so yn approaches to eλxn 

 yn approaches to eλnh 

(1), (3) correct

Numerical Analysis Question 6:

The values of α, A, B, C for which the quadrature formula  is exact for polynomials of highest possible degree, are

Answer (Detailed Solution Below)

Option :

Numerical Analysis Question 6 Detailed Solution

Explanation:

for f(x) = 1 we get

A + B + C = 2...(i)

for f(x) = x we get

(A-C)α = ....(ii)

Option (1): 

A + B + C =  = 2

and (A-C)α 

Hence it satisfies both equations (i) and (ii).

Option (1) is correct.

Option (2): 

A + B + C =  = 2

and (A-C)α = 

It is not satisfying  (ii).

Option (2) is not correct.

Option (3): 

A + B + C =  = 2

and (A-C)α = 

It is not satisfying  (ii).

Option (3) is not correct.

Option (4): 

A + B + C =  = 2

and (A-C)α = 

Hence it satisfies both equations (i) and (ii).

Option (4) is correct.

Numerical Analysis Question 7:

Consider the numerical integration formula

 g(x) dx ≈ g(α) + g(-α),

where α = (0.2)1/4. Which of the following statements are true?

  1. The integration formula is exact for polynomials of the form a + bx, for all a, b ∈ 
  2. The integration formula is exact for polynomials of the form a + bx + cx2, for all a, b, c ∈ 
  3. The integration formula is exact for polynomials of the form a + bx + cx2 + dx3, for all a, b, c, d ∈ 
  4. The integration formula is exact for polynomials of the form a + bx + cx3 + dx4, for all a, b, c, d ∈ 

Answer (Detailed Solution Below)

Option :

Numerical Analysis Question 7 Detailed Solution

Explanation:

Given  ≈  g(α) + g(-α), α = (0.2)¼ - (i)

(a) ∵  

           = =a + b/2 - (-a + b/2) = 2a

while g(α) + g(-α) = (a + bα) + (a - bα) = 2a 

⇒ for a + bx form, (i) gives exact value

Opt (1) True

(b) ∵ 

= a + b/2 + c/3 - (-a + b/2 - c/3)

= 2a + 2c/3

While g(α) + g(-α)  = a + bα + cα+ [a - bα + cα2]

= 2a + 2cα2 ≠ 2a + 2c/3

so, Not exact in this case.

Eg. Let a = 0, c = 1, b ∈  any thing

 g(x) = 2a + 2c/3 = 2/3,  g(α) + g(-α) = 2(0.2)

which is NOT equal ⇒ opt (2) False

Op(c). (Note: similar argument as (a) & (b)

 

While g(α) + g(-α) = a + bα + cα2 + dα3 + a - bα + cα- dα3 

=2 (a + cα2)

Again, in this case, both are not equal.

so opt (3) False.

Op(d): ∵  (a + bx + cx+ dx4)dx =  

= 2a + 2d/5

while g(α) + g(-α) = a + bα + cα3 + dα4 + (a - bα - cα+ dα4)

= 2a + 2dα= 2a + 2d(0.2)4/4

= 2a + 2d(0.2) = 2a + ⇒ op(4) true 

Numerical Analysis Question 8:

Consider the Euler method for integration of the system of differential equations

ẋ = - y

ẏ = x

Assume that () are the points obtained for i = 0,1,..., n2 using a time-step h = 1/n starting at the initial point (x0,y0) = (1,0). Which of the following statements are true?

  1. The points () lie on a circle of radius 1
  2. 1\) for i ≥ 1

Answer (Detailed Solution Below)

Option :

Numerical Analysis Question 8 Detailed Solution

Correct statements are

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)  1\) for i ≥ 1

Options (2), (3) (4) are correct

Numerical Analysis Question 9:

Consider the Newton-Raphson method applied to approximate the square root of a positive number α. A recursion relation for the error en = x is given by

Answer (Detailed Solution Below)

Option :

Numerical Analysis Question 9 Detailed Solution

Concept:

Iterative formula for NR-method

 

Explanation

Iterative formula for NR-method

 --- (i)

Let f(x) = x3 - α 

⇒ f'(x) = 3x2

So, putting in (i) we get

and given en = x ⇒ x= e.

hence we get

(2) is correct

Numerical Analysis Question 10:

Let Pf(x) be the interpolating polynomial of degree at most two that interpolates the function f(x) = x2|x| at the points x = −1, 0, 1. Then

 ___________ (round off to TWO decimal places) 

Answer (Detailed Solution Below) 0.15

Numerical Analysis Question 10 Detailed Solution

Explanation:

f(x) = x2|x| at the points x = −1, 0, 1

f(x) = 

So, 

x -1 0 1
f(x) 1 0 1

 

Then Pf(x) = x2

Now let g(x) = f(x) - Pf(x) = x2|x| - x2 

So, g(x) = 

g'(x) = 

For critical point

g'(x) = 0 ⇒ x = 

Now, g(0) = 0 

g(2/3) = 

and g(-2/3) = 

max |g(x)| =  ≈ 0.15

Hence max g(x) =  

Answer is 0.15

Hot Links: teen patti stars teen patti master app teen patti party teen patti 500 bonus