ABCD Parameters MCQ Quiz in తెలుగు - Objective Question with Answer for ABCD Parameters - ముఫ్త్ [PDF] డౌన్లోడ్ కరెన్
Last updated on Mar 18, 2025
Latest ABCD Parameters MCQ Objective Questions
Top ABCD Parameters MCQ Objective Questions
ABCD Parameters Question 1:
In ABCD parameters,
Answer (Detailed Solution Below)
ABCD Parameters Question 1 Detailed Solution
Concept:
There are four variables V1, V2, I1, and I2 in a two-port network as shown in the figure
From the ABCD parameters matrix, we get the following equations.
V1 = A V2 – B I2
I1 = C V2 - D I2
Calculation:
For two-port Network and parameters:
Now, for ABCD parameters
V1 = AV2 – BI2
I1 = CV1 – DI2
From equation (1)
ABCD Parameters Question 2:
In ABCD parameters,
Answer (Detailed Solution Below)
ABCD Parameters Question 2 Detailed Solution
Concept:
There are four variables V1, V2, I1, and I2 in a two-port network as shown in the figure
From the ABCD parameters matrix, we get the following equations.
V1 = A V2 – B I2
I1 = C V2 - D I2
Calculation:
For two-port Network and parameters:
Now, for ABCD parameters
V1 = AV2 – BI2
I1 = CV1 – DI2
From equation (1)
ABCD Parameters Question 3:
For the network shown in the figure, the transmission parameter matrix is
What is the value of impedance Z1?
Answer (Detailed Solution Below)
ABCD Parameters Question 3 Detailed Solution
Concept:
ABCD parameters are defined as:
V1 = A V2 – B I2
I1 = C V2 – D I2
Application:
With A = 1, B = -j, C = 1 and D = 1 - j, the ABCD equations can be written as:
V1 = V2 - (- j) I2 ---(1)
I1 = V2 – (1 - j) I2 ---(2)
The given two-port network is redrawn as:
Z1 can be obtained by short-circuiting the output, i.e.
Applying KVL at the output, we get
V1 + I2Z1 = 0
V1 = -I2Z1
Comparing this with the given ABCD matrix of Equation (1), we get:
B = Z1 = - j
∴ Z1 = - j Ω
ABCD Parameters Question 4:
The ABCD parameters of the following 2-port network are
Answer (Detailed Solution Below)
ABCD Parameters Question 4 Detailed Solution
Concept:
ABCD parameter for any two-port network given below is expressed as:
Calculation:
For I2 = 0,
Applying voltage division across Z3:
Applying Ohms Law across Z3
For V2 = 0,
Applying current division:
Apply KVL,
Form 1, 2, 3 & 4
ABCD Parameters Question 5:
For a 2-port symmetrical bilateral network, if transmission parameters A = 3 and B = 1Ω. The value of parameter C is
Answer (Detailed Solution Below)
ABCD Parameters Question 5 Detailed Solution
Concept:
We know that the ABCD parameter of transmission line
For symmetrical network:
A = D
For reciprocity network:
AD – BC
Analysis:
For symmetrical network A = D = 3
For bilateral AD – BC = 1
9 – C = 1
C = 8
Conditions of reciprocity and symmetry in terms of different two-port parameters are:
Parameter |
Conditions of reciprocity |
Conditions of symmetry |
Z |
z12 = z21 |
z11 = z22 |
Y |
y12 = y21 |
y11 = y22 |
T(ABCD) |
(AD – BC) = 1 |
A = D |
h |
h12 = -h21 |
(h11h22 – h12h21) = 1 |
ABCD Parameters Question 6:
Match List - I with List - II
List-I |
List-II |
A. h11 |
1. |
B. h12 |
2. |
C. h21 |
3. |
D. h22 |
4. |
Choose the correct answer from the options given below:
Answer (Detailed Solution Below)
ABCD Parameters Question 6 Detailed Solution
h-parameter: (Hybrid parameter)
For a two-port Network:
V1 = h11I1 + h12V2
I2 = h21I1 + h22V2
T-paraemeter (ABCD Parameter):
V1 = AV2 – BI2
I1 = CV2 – DI2
Two port Network conversion table:
|
Z |
y |
h |
T |
Z |
|
|
|
|
Y |
|
|
|
|
H |
|
|
|
|
T |
|
|
|
|
Where
ΔZ = Z11Z22 – Z12Z21
Δh = h11h22 – h21h12
ΔY = Y11Y22 – Y12Y21
ΔT = AD - BC
Explanation:
From the table
Notes:
Reciprocal |
Symmetrical |
Z12 = Z21 |
Z11 = Z22 |
Y12 = Y21 |
Y11 = Y22 |
AD - BC = 1 |
A = D |
h12 = -h21 |
h11h12 - h21h22 = 1 |
g12 = -g21 |
g11g22 - g21g12 = 1 |
ABCD Parameters Question 7:
The Transmission Parameters of the network given below is Represented in the matrix form as
Calculate the Transmission Parameter B of [T] matrix
Answer (Detailed Solution Below)
ABCD Parameters Question 7 Detailed Solution
Concept:
Transmission or ABCD parameters
General two-port network and Transmission parameters two-port network is shown below.
Transmission 2 port network
The direction of I2 is opposite to the standard form so it is taken as negative.
Transmission parameters are defined as:
V1 and I1 are dependent and V2 and I2 are independent.
Calculation:
From the ABCD parameters matrix, we get the following equations.
V1 = A V2 – B I2
I1 = C V2 - D I2
To calculate B we have to make V2 = 0.
Element in parallel to the short circuit is redundant.
Apply KVL in the loop
- V1 – j2 × I2 = 0
B = j2 Ω
ABCD Parameters Question 8:
A two-port network is represented by ABCD parameters given by
If the network is terminated by
Answer (Detailed Solution Below)
ABCD Parameters Question 8 Detailed Solution
Concept:
ABCD Parameters:
ABCD parameters relate the variables at the input port to those at the output port.
V1 = AV2 - BI2
I1 = CV2 - DI2
With output open-circuited, i.e. I2 = 0, the two parameters we get are:
A = Reverse voltage ratio, as it is the ratio of output voltage and the input voltage
C = Transfer admittance, as it is the ratio of current to the voltage
With the input short-circuited, i.e. V1 = 0, the two parameters we get are:
Analysis:
And
Input Impedance:
∴ Input Impedance =
(4) is correct.
ABCD Parameters Question 9:
For the given network, find the ABCD parameters.
Answer (Detailed Solution Below)
ABCD Parameters Question 9 Detailed Solution
Concept:
The general ABCD parameter for the two-port network can be given by:
But if we reverse the direction of I1 and I2 then:
Application:
Given:
At the output side, we can write:
V2 = -5 I4 ---(1)
V1 = -5 I3 ---(2)
Putting I3 and I4 in Equation (1) and (2), we get:
Now make V2 = 0 by short-circuiting at the output port.
V1 = -5 I1 – 5 I2 ----(3)
Also V1 = 10 I2 ---(4)
From (3) and (4)
10 I2 = -5 I1 – 5 I2
15 I2 = -5 I1
I1 = -3 I2 ---(5)
Using Equation (4), we get:
Using Equation (5), we get:
ABCD Parameters Question 10:
Find the ABCD parameters of an ideal transformer given below
Answer (Detailed Solution Below)
ABCD Parameters Question 10 Detailed Solution
Given that N1 : N2 = 4 : 1
But here