Shortest Distance MCQ Quiz in मल्याळम - Objective Question with Answer for Shortest Distance - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 19, 2025

നേടുക Shortest Distance ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Shortest Distance MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Shortest Distance MCQ Objective Questions

Top Shortest Distance MCQ Objective Questions

Shortest Distance Question 1:

Find the shortest distance between the lines  ?

  1. None of these

Answer (Detailed Solution Below)

Option 3 :

Shortest Distance Question 1 Detailed Solution

Concept:

The shortest distance between the skew line  is given by:

Calculation:

Given: Equation of lines is 

By comparing the given equations with , we get

⇒ x1 = 3, y1 = 4, z1 = - 2, a1 = -1, b1 = 2 and c1 = 1

Similarly, x2 = 1, y2 = - 7, z2 = -2, a2 = 1, b2 = 3 and c2 = 2

So, 

As we know that shortest distance between two skew lines is given by:

⇒ 

Hence, option C is the correct answer.

Shortest Distance Question 2:

Let λ be an integer. If the shortest distance between the lines x – λ = 2y – 1 = -2z and x = y + 2λ = z – λ is √7/2√2, then the value of |λ| is _________

Answer (Detailed Solution Below) 1

Shortest Distance Question 2 Detailed Solution

Calculation:

Distance between skew lines  and  is given by:

d = 

Calculation:

Given, (x – λ)/1 = (y – 1/2)/(1/2) = z/(-1/2)

(x – λ)/2 = (y-1/2)/1 = z/(-1) …(1) Point on line = (λ, 1/2, 0)

x/1 = (y + 2λ)/1 = (z – λ)/1 …(2) Point on line = (0, -2λ, λ)

∴ Distance between skew lines = 

= |-5λ – 3/2|/

= √7/(2√2) (Given)

⇒ |10λ + 3| = 7

⇒ 10λ + 3 = ± 7

⇒ λ = - 1 [∵ λ is an integer]

⇒ |λ| = 1

∴ The value of |λ| is 1. 

Shortest Distance Question 3:

The shortest distance between the lines  is

  1. 6√3
  2. 4√3
  3. 5√3
  4. 8√3

Answer (Detailed Solution Below)

Option 2 : 4√3

Shortest Distance Question 3 Detailed Solution

Concept:

The shortest distance between the lines  and  is given by d = 

Calculation:

Given,  and 

∴ a1  and b1

a2 =  and b2

⇒ a2 – a1

∴ 

⇒ 

∴  = 16[-4 + 16] = (16)(12)

⇒ d =  = 4√3

∴ The shortest distance is 4√3.

The correct answer is Option 2.

Shortest Distance Question 4:

The shortest distance between lines L1 and L2, where  and L2 is the line passing through the points A(-4, 4, 3). B(-1, 6, 3) and perpendicular to the line  is

Answer (Detailed Solution Below)

Option 3 :

Shortest Distance Question 4 Detailed Solution

Calculation

⇒ 

⇒ 

⇒ 

⇒ 

Hence, Option (3) is correct

Shortest Distance Question 5:

If d1 is the shortest distance between the lines  x + 1 = 2y = -12z, x = y + 2 = 6z – 6 and d2 is the shortest distance between the lines , then the value of is :

Answer (Detailed Solution Below) 16

Shortest Distance Question 5 Detailed Solution

Calculation

Given

d1 = shortest distance between L1 & L2 

⇒ d1

⇒ d1 = 2

d2 = shortest distance between L3 & L4

⇒  

Hence

 = 16

Shortest Distance Question 6:

Find the shortest distance between the lines 

  1. 26
  2. 23
  3. 25
  4. None of these

Answer (Detailed Solution Below)

Option 1 : 26

Shortest Distance Question 6 Detailed Solution

Concept:

The shortest distance between the skew line and  is given by:

Calculation:

Given: Equation of lines is  and 

By comparing the given equations with  and , we get

⇒ x1 = 12, y1 = 1, z1 = 5, a1 = -9, b1 = 4 and c1 = 2

Similarly, x2 = 23, y2 = 19, z2 = 25, a2 = -6, b2 = -4 and c2 = 3

So, 

As we know that shortest distance between two skew lines is given by:

⇒ SD = 26 units

Hence, option A is the correct answer.

Shortest Distance Question 7:

Find the shortest distance between the lines 

  1. None of these

Answer (Detailed Solution Below)

Option 1 :

Shortest Distance Question 7 Detailed Solution

Concept:

The shortest distance between the skew line  is given by:

Calculation:

Given: The equation of lines is 

By comparing the given equations, we get

⇒ x1 = 3, y1 = 5, z1 = 7, a1 = 1, b1 = - 2 and c1 = 1

Similarly, x2 = - 1, y2 = -1, z2 = -1, a2 = 7, b2 = - 6 and c2 = 1

So, 

Similarly, 

= 2√29

As we know that shortest distance between two skew lines is given by:

⇒ SD = 

Shortest Distance Question 8:

If the shortest distance between the lines  and  is 1, then the sum of all possible values of λ is :

  1. 0

Answer (Detailed Solution Below)

Option 2 :

Shortest Distance Question 8 Detailed Solution

Calculation

Given: Shortest distance(S.D) = 1

Passing points of lines L1 & L2 are

(λ, 2, 1) & (√3, 1, 2)

⇒ 

 λ = 0, λ = 2√3

∴ The sum of all possible values of λ is 

Shortest Distance Question 9:

If the shortest distance between the lines  and  is , then a value of λ is :

  1. 1
  2. -1

Answer (Detailed Solution Below)

Option 3 : 1

Shortest Distance Question 9 Detailed Solution

Explanation -

Shortest dist. = 

144 + 16λ2 + (3λ – 6)2 = 169

16λ2 + (3λ – 6)2 = 25  ⇒ λ = 1 

Hence Option (3) is correct.

Shortest Distance Question 10:

The distance of the point Q(0, 2, –2) form the line passing through the point P(5, –4, 3) and perpendicular to the lines  λ ∈ ℝ and , μ ∈ ℝ is

Answer (Detailed Solution Below)

Option 4 :

Shortest Distance Question 10 Detailed Solution

Calculation

l1 : 

l2 :  

Vector ⊥ to the above two lines 

⇒  =  = 

Equation of required line

⇒ L :  

⇒ L :  = λ 

⇒ x =λ + 5 , y = λ - 4, z = λ + 3

QR.L = (λ + 5).1 + (λ - 6).1 +(3 - λ + 2)(-1) = 0

⇒ 3λ = 6 ⇒ λ = 2

⇒ R = (7, -2, 1)

QR = 

Hence option 4 is correct

Hot Links: teen patti classic teen patti gold old version teen patti 3a teen patti cash game teen patti app